Three-Point Horizontal Resection Reduction Program
Programmer: Dr. Bill Hazelton European Edition, using Grads (gon)
Date: June, 2013.
Version: 1.0
Mnemonic: R for Resection

Line	Instruction	Program Entry Keystrokes
R001	LBL R	Γ LBL R
R002	CLSTK	\rightarrow CLEAR 5 STK
R003	GRAD	MODE 3 GRD
R004	FS? 10	\checkmark FLAGS 3 FS ? . 0
R005	GTO R009	GTO R 009
R006	SF 1	\leftarrow FLAGS 1 SF 1
R007	SF 10	\checkmark FLAGS 1 SF .0
R008	GTO R010	GTO R 010
R009	CF 1	\checkmark FLAGS 2 CF 1
R010	RESECTION	(Key in using EQN RCL R RCLE RCL S etc.)
R011	PSE	$\stackrel{\text { PSE }}{ }$
R012	ENTER LEFT X	(Key in using EQN RCLE RCL N RCL T etc.)
R013	PSE	$\stackrel{\text { PSE }}{ }$
R014	INPUT X	\checkmark INPUT X
R015	STO A	$\stackrel{\text { STO A }}{ }$
R016	ENTER LEFT Y	(Key in using EQN RCLE RCL N RCL T etc.)
R017	PSE	$\stackrel{\text { PSE }}{ }$
R018	INPUT Y	\checkmark INPUT Y
R019	STO B	$\stackrel{\text { STO B }}{ }$
R020	ENTER MID X	(Key in using EQN RCLE RCL N RCL T etc.)
R021	PSE	$\stackrel{+}{4}$ PSE
R022	INPUT X	\checkmark INPUT X
R023	STO C	$\stackrel{\text { STO C }}{ }$
R024	ENTER MID Y	(Key in using EQN RCLE RCL N RCL T etc.)
R025	PSE	$\stackrel{+}{ } \times$ PSE
R026	INPUT Y	\leftarrow INPUT Y
R027	STO D	$\stackrel{\text { STO D }}{ }$
R028	ENTER RIGHT X	(Key in using EQN RCLE RCL N RCL T etc.)
R029	PSE	$\stackrel{\text { PSE }}{ }$
R030	INPUT X	\checkmark INPUT X
R031	STO E	$\stackrel{\text { STO E }}{ }$
R032	ENTER RIGHT Y	(Key in using EQN RCLE RCL N RCL T etc.)
R033	PSE	$\stackrel{\text { P PSE }}{ }$
R034	INPUT Y	\checkmark INPUT Y
R035	STO F	$\stackrel{\text { STO F }}{ }$
R036 **	ENTER ALPHA	(Key in using EQN RCL E RCL N RCL T etc.) ${ }^{* *}$
R037	PSE	$\stackrel{+}{4}$ PSE
R038	INPUT X	\checkmark INPUT X
R039	STO G	r STO G

HP-35s Calculator Program
Three Point Horizontal Resection Reduction Program

R040	ENTER BETA	(Key in using EQN RCLE RCL N RCL T etc.)
R041	PSE	$\stackrel{\text { PSE }}{ }$
R042	INPUT X	\leftarrow INPUT X
R043	STO H	$\stackrel{\text { STO H }}{ }$
R044	RCL B	RCL B
R045	RCL- D	RCL - D
R046	RCL A	RCL A
R047	RCL- C	RCL - C
R048	0 i 1	Press the zero key, then \mathbf{i}, then 1 .
R049	\times	
R050	+	
R051	STO L	$\stackrel{\text { STO L }}{ }$
R052	RCL F	RCL F
R053	RCL- D	RCL - D
R054	RCL E	RCL E
R055	RCL- C	RCL - C
R056	0 i 1	Press the zero key, then \mathbf{i}, then 1.
R057	\times	
R058	+	
R059	STO K	$\stackrel{\text { STO K }}{ }$
R060	400	
R061	STO Z	$\stackrel{\text { STO Z }}{ }$
R062	RCL L	RCL L
R063	ARG	4 ARG
R064	RCL K	RCL K
R065	ARG	\checkmark ARG
R066	-	
R067	$\mathrm{x}<0$?	$\rightarrow \mathrm{x}$? 0 3<
R068	RCL+ Z	RCL +Z
R069	STO I	$\stackrel{\text { STO I }}{ }$
R070	RCL+ G	RCL + G
R071	RCL+ H	RCL +H
R072	RCL Z	RCL Z
R073	$\mathrm{x}<>\mathrm{y}$	
R074	-	
R075	STO S	$\stackrel{\text { STO S }}{ }$
R076	RCL L	RCL L
R077	ABS	$\stackrel{\text { ABS }}{ }$
R078	RCL H	RCL H
R079	SIN	
R080	\times	
R081	RCL K	RCL K
R082	ABS	$\stackrel{\text { ABS }}{ }$
R083	\div	(Division /)
R084	RCL G	RCL G
R085	SIN	
R086	\div	(Division /)

Three Point Horizontal Resection Reduction Program

Three Point Horizontal Resection Reduction Program

R134	RCL I	RCL I
R135	RCL+ G	RCL + G
R136	RCL+ H	$\mathrm{RCL}+\mathrm{H}$
R137	CHECK VALUE =	(Key in using EQN RCL C RCL H RCL E etc.)
R138	PSE	$\stackrel{\text { PSE }}{ }$
R139	STOP	(Key in R/S)
R140	FS? 1	\leftarrow FLAGS 3 FS? 1
R141	CF 10	\leftarrow FLAGS 2 CF .0
R142	RTN	\leftarrow RTN

Notes

Horizontal 3-point resection solution, based on measuring two angles between three known points at an unknown point, the location of which is to be computed.
(2) Brief prompts are provided before each requirement for data entry, as well as before results are displayed. Each prompt shows for about 1 second, and is then replaced by the value or request for input.
(3) Co-ordinates of the unknown point are displayed following brief prompts. They are also stored in storage registers X and Y for later retrieval.
(4) Angles are entered and displayed in grads (gon). Internal storage of lines uses the calculator's complex number format.

Theory

This 2-D resection uses Ormsby's solution. In the discussion below, A is the left point, B is the middle point, C is the right point, and P is the unknown point. The left angle is alpha (α) and the right angle is beta (β). The interior angle at B is gamma (γ). The angle at point A is x , which is the first objective of the solution. A diagram is shown on the next page.
α and β are angles observed from the point P to points A, B and C , whose co-ordinate are known.

$$
\begin{aligned}
& B P=\frac{A B \sin x}{\sin \alpha}=\frac{B C \sin y}{\sin \beta} \\
& \text { and }(x+y)=\left(360^{\circ}-(\alpha+\beta+\gamma)\right)=s
\end{aligned}
$$

$$
\frac{\mathrm{AB}}{\sin \alpha} \sin x=\frac{\mathrm{BC}}{\sin \beta} \sin (\mathrm{~s}-\mathrm{x})=\frac{\mathrm{BC}}{\sin \beta}(\sin \mathrm{~s} \cos \mathrm{x}-\cos \mathrm{s} \sin \mathrm{x})
$$

$$
\frac{\mathrm{AB}}{\sin \alpha} \sin x=\frac{\mathrm{BC}}{\sin \beta} \sin \mathrm{~s} \cos \mathrm{x}-\frac{\mathrm{BC}}{\sin \beta} \cos \mathrm{~s} \sin \mathrm{x}
$$

$$
\sin x\left(\frac{A B}{\sin \alpha}+\frac{B C}{\sin \beta} \quad \cos s\right)=\frac{B C}{\sin \beta} \sin s \cos x
$$

$$
\left(\frac{\mathrm{AB}}{\sin \alpha}+\frac{\mathrm{BC}}{\sin \beta} \cos \mathrm{~s}\right) \frac{\sin \beta}{\mathrm{BC} \sin \mathrm{~s}}=\cot \mathrm{x}
$$

$$
\frac{\mathrm{AB} \sin \beta}{\mathrm{BC} \sin \alpha \sin \mathrm{~S}}+\frac{\mathrm{BC} \cos \sin \beta}{\mathrm{BC} \sin \sin \beta}=\cot x
$$

$$
y=s-x
$$

With x and y determined, the sides AP, BP and CP can be calculated and hence the co-ordinates of P , as follows:

The azimuth of $\mathrm{BP}\left(\mathrm{Az}_{\mathrm{BP}}\right)$ can be determined using $\mathrm{Az}_{\mathrm{BP}}=\mathrm{Az}_{\mathrm{AB}}+\alpha+\mathrm{x}$
The length of BP can be determined using $\quad B P=\frac{A B \sin x}{\sin \alpha}$

Knowing the co-ordinates of $\mathrm{B}, \mathrm{Az}_{\mathrm{BP}}$ and BP , the co-ordinates of P can be easily computed. As a check, the equivalent solution can be obtain through the sides AP or CP , or using the angle y . Note that if P is close the danger circle, a solution will still be obtained, but the sum of $\alpha+\beta+\gamma$ will be close to 200^{g}, probably in the range 195^{g} to 205^{g}. In this case, the solution will be highly sensitive to changes in α and β. If the solution is close to the danger circle, recompute with the angles changed by about their precision and see how much the resulting co-ordinates change. It can be quite surprising! To facilitate this, press GTO R036, then R/S, to run the program with the same known points, but you can enter different observed angles.

Azimuths in grads (gon) are used. Arbitrary co-ordinates are satisfactory. Plane surveying assumptions apply. The program uses no error checking on entered data. A check is made by showing the sum $\alpha+\beta+\gamma$. If this is close to 200^{g}, the unknown point lies close to the danger circle and the result is highly suspect.

Three Point Horizontal Resection Reduction Program
Sample Computation 1

Known Points

	Point Name	X	Y
	Point A	-25.336	778.136
	Point B	-27.465	1179.927
	Point C	-30.297	1555.643
Angles	Left $(\alpha)=136.3526$ grads		
$\operatorname{Right}(\beta)=27.1924$ grads			
Results	Unknown Point (P) X Co-ordinate $=75.702$		
	Unknown Point (P) Y Co-ordinate $=1038.192$		
	Check Angle $=363.6875$ grads		

Sample Computation 2

Known Points

	Point Name	X	Y
	Point A	133.639	1548.712
	Point B	158.065	1492.276
	Point C	150.267	1353.056
Angles	Left (α) = 5.0148 grads		
$\operatorname{Right}(\beta)=3.4129$ grads			
Results	Unknown Point $(\mathrm{P}) \mathrm{X}$ Co-ordinate $=109.509$		
Unknown Point (P) Y Co-ordinate $=1143.181$			
Check Angle $=178.8618$ grads			

This is not the ideal arrangement for a resection, as the measured angles are quite small. But the program will still produce an acceptable result.

This example is provided because the other example has negative co-ordinates and this tends to increase the chances of incorrect data entry. It happened to me, twice!

Running the Program

Press XEQ R ENTER
Calculator displays RESECTION briefly, so that you know you are running the correct program.
Prompt ENTER LEFT X briefly, then X?
Enter X Co-ordinate for left known point.
Press R/S.
Prompt ENTER LEFT Y briefly, then Y?
Enter Y Co-ordinate for left known point.
Press R/S.
Prompt ENTER MID X briefly, then X?
Enter X Co-ordinate for middle known point.
Press R/S.
Prompt ENTER MID Y briefly, then Y?
Enter Y Co-ordinate for middle known point.
Press R/S.
Prompt ENTER RIGHT X briefly, then X?
Enter X Co-ordinate for right known point.
Press R/S.
Prompt ENTER RIGHT Y briefly, then Y?
Enter Y Co-ordinate for right known point.
Press R/S.
** Prompt ENTER ALPHA briefly, then X?
Enter left angle (α) in grads (gon).
Press R/S.
Prompt ENTER BETA briefly, then X?
Enter right angle (β) in grads (gon).
Press R/S.
Calculator displays RUNNING while doing the calculations.

Prompt UNKNOWN X briefly, then $\mathrm{X}=$
X co-ordinate of unknown point (P) is displayed.
Press R/S.
Prompt UNKNOWN Y briefly, then $\mathrm{Y}=$
Y co-ordinate of unknown point (P) is displayed.
Press R/S.
Prompt CHECK VALUE briefly.
Sum $\alpha+\beta+\gamma$ is displayed in lower line of display in grads (gon).
Check that value is not too close to 200^{g}. At least 5^{g} away, preferably 15^{g} or more away.
If you want to re-run the program with the same fixed points but different angles, press GTO R036, then R/S, and the program will start from the step labeled ** above, prompting with ENTER ALPHA. Changing the angles by small amounts can give you a good idea of the reliability of the solution.

Once you are finished with the program, and you have seen the CHECK VALUE prompt and value, press R / S to clear flags. The program ends.

Storage Registers Used

A Left known point - X co-ordinate
B Left known point - Y co-ordinate
C Middle known point - X co-ordinate
D Middle known point - Y co-ordinate
E Right known point - X co-ordinate
F Right known point - Y co-ordinate
G Left measured angle - alpha (α)
H \quad Right measured angle - beta (β)
I Interior angle at Middle known point - gamma (γ)
J Distance from middle point to the unknown point

K Vector from middle to right point (complex number format)
L Vector from middle to left point (complex number format)
P $\quad \mathrm{X}$ co-ordinate of unknown point
Q Y co-ordinate of unknown point
$\mathbf{S} \quad \mathrm{s}=\mathrm{x}+\mathrm{y}$ in grads
$\mathbf{X} \quad$ Initial inputs, then angle x, then X co-ordinate of unknown point
\mathbf{Y} Initial inputs, then azimuth from middle to unknown point, then Y co-ordinate of unknown point
Z 400

Labels Used

Label $\mathbf{R} \quad$ Length $=575 \quad$ Checksum $=7082$
Use the length ($\mathrm{LN}=$) and Checksum ($\mathrm{CK}=$) values to check if program was entered correctly. Use the sample computation to check proper operation after entry.

The program sets flag 10 , to allow equations to be displayed as prompts, and at the end of the program, resets flag 10 to its previous setting. The program uses flag 1 to record the state of flag 10 before the program started.

Note that if you change anything in the program, especially prompts, the Checksum and Length values will probably change.

Localization

You are very welcome to modify this program to suit your local circumstances. The easiest step is changing the prompts to local language or terminology. You may prefer to use E and N for the co-ordinates, and some other names for the angles.

If you want to change the variable prompts, this will require more changes within the program. As many of the variables (and letters) are used, this may cause you to have to change other variables. For example, if you want to use Z for angular input, you will then need to use a different variable to store the 400 value used for correcting negative angles. Make sure you have tracked all the impacts of your changes before you start implementing them!

This version was specifically designed for European use, based on the use of grads (gon) for angles. Another version (Closure 3A) is available for degrees, minutes and seconds use. If you want to use decimal degrees throughout, change Line R003 to: MODE 2 DEG and use decimal degrees in the program. You will also need to make the following changes:

Line R060 to 360
Line R099 to 180

