Traverse Program using Latitude and Longitude and the Gauss Mid-Latitude Formulae

Programmer: Dr. Bill Hazelton
Date: March, 2008. Version: 1.0

Line	Instruction	Display	User Programming Instructions
J001	LBL J		r LBL J
J002	CLSTK		$\stackrel{\text { CLEAR }}{ } 5$
J003	FS? 10		\checkmark FLAGS 3.0
J004	GTO J008		
J005	SF 1		\leftarrow FLAGS 11
J006	SF 10		\checkmark FLAGS 1.0
J007	GTO J009		
J008	CF 1		\leftarrow FLAGS 21
J009	GAUSS M-L TRAV		(Key in using EQN RCL G, RCL A, etc.)
J010	PSE		$\stackrel{\text { PSE }}{ }$
J011	6378137		
J012	STO A		\rightarrow STO A
J013	$6.699438 \mathrm{E}-3$		
J014	STO E		\rightarrow STO E
J015	CHECK-ENTER A		(Key in using EQN RCL C, RCL H, etc.)
J016	PSE		$\stackrel{\square}{\text { PSE }}$
J017	INPUT A		\leftarrow INPUT A
J018	CHECK-ENTER E		(Key in using EQN RCL C, RCL H, etc.)
J019	PSE		$\stackrel{\text { PSE }}{ }$
J020	INPUT E		\checkmark INPUT E
J021	1		
J022	STO M		$\stackrel{\text { STO M }}{ }$
J023	CHOOSE UNITS		(Key in using EQN RCL C, RCL H, etc.)
J024	PSE		$\stackrel{\text { PSE }}{ }$
J025	FEET-METERS		(Key in using EQN RCL F, RCL E, etc.)
J026	PSE		$\stackrel{\text { PSE }}{ }$
J027	INPUT M		\leftarrow INPUT M
J028	0		
J029	STO H		\mapsto STO H
J030	STO F		r STO F
J031	STO L		$\stackrel{\text { STO L }}{ }$
J032	AV HT ALL LINES		(Key in using EQN RCL A, RCL V, etc.)
J033	PSE		$\stackrel{\text { PSE }}{ }$
J034	ENTER HT		(Key in using EQN RCL E, RCL N, etc.)
J035	PSE		$\stackrel{+}{4}$ PSE
J036	INPUT H		\leftarrow INPUT H
J037	START POSN		(Key in using EQN RCL S, RCL T, etc.)
J038	PSE		\rightarrow PSE
J039	ENTER LAT		(Key in using EQN RCL E, RCL N, etc.)

Traverse Closure Using Latitude and Longitude

Line	Instruction	Display	User Programming Instructions
J040	PSE		\rightarrow PSE
J041	INPUT F		\checkmark INPUT F
J042	ENTER LONG		(Key in using EQN RCL E, RCL N, etc.)
J043	PSE		$\stackrel{\text { PSE }}{ }$
J044	INPUT L		\checkmark INPUT L
J045	RCL F		
J046	HMS \rightarrow		\leftarrow HMS \rightarrow
J047	STO F		$\stackrel{\text { STO F }}{ }$
J048	STO Y		$\stackrel{\text { STO Y }}{ }$
J049	RCL L		
J050	HMS \rightarrow		$\leftarrow \mathrm{HMS} \rightarrow$
J051	STO L		$\stackrel{\text { STO L }}{ }$
J052	STO X		$\stackrel{\text { STO X }}{ }$
J053	1		
J054	RCL H		
J055	RCL× M		
J056	1.571 E-7		
J057	\times		
J058	-		
J059	STO H		$\stackrel{\text { STO H }}{ }$
J060	ENTER AZIMUTH		(Key in using EQN RCL E, RCL N, etc.)
J061	PSE		$\stackrel{\square}{ } \rightarrow$ PSE
J062	INPUT Z		ヶ INPUT Z
J063	ENTER DISTANCE		(Key in using EQN RCL E, RCL N, etc.)
J064	PSE		\rightarrow PSE
J065	INPUT D		\checkmark INPUT D
J066	RCL Z		
J067	HMS \rightarrow		\checkmark HMS \rightarrow
J068	STO Z		$\stackrel{\text { STO Z }}{ }$
J069	RCL M		
J070	STO \times D		$\stackrel{\mathrm{STO}}{ } \times \mathrm{D}$
J071	RCL H		
J072	STO \times D		$\rightarrow \mathrm{STO} \times \mathrm{D}$
J073	RCL Z		
J074	SIN		
J075	RCL× D		
J076	RCL Z		
J077	COS		
J078	RCL× D		
J079	RCL \div A		
J080	\rightarrow DEG		$r \rightarrow$ DEG
J081	STO S		$\stackrel{\text { STO S }}{ }$
J082	2		
J083	\div		
J084	STO B		\rightarrow STO B
J085	$\mathrm{x}<>\mathrm{y}$		

HP-35s Calculator Program
Traverse Closure Using Latitude and Longitude

Line	Instruction	Display	User Programming Instructions
J086	RCL F		
J087	RCL+ B		
J088	COS		
J089	\div		
J090	$\mathrm{RCL} \div \mathrm{A}$		
J091	\rightarrow DEG		$\stackrel{\rightarrow}{ } \rightarrow$ DEG
J092	STO T		$\stackrel{\text { STO T }}{ }$
J093	2		
J094	\div		
J095	STO C		\bigcirc STO C
J096	1.004		
J097	STO Q		$\mapsto \mathrm{STO} \mathrm{Q}$
J098	RCL F		
J099	RCL+ B		
J100	SIN		
J101	RCL C		
J102	TAN		
J103	\times		
J104	RCL B		
J105	COS		
J106	\div		
J107	ATAN		r ATAN
J108	STO G		$\stackrel{\text { STO G }}{ }$
J109	1		
J110	RCL- E		
J111	RCL× A		
J112	RCL F		
J113	RCL+ B		
J114	SIN		
J115	RCL× E		
J116	1		
J117	$\mathrm{x}<>\mathrm{y}$		
J118	-		
J119	1.5		
J120	y^{x}		
J121	\div		
J122	STO R		$\stackrel{\text { STO R }}{ }$
J123	RCL A		
J124	1		
J125	RCL F		
J126	RCL+ B		
J127	SIN		
J128	RCL× E		
J129	-		
J130	$\sqrt{\text { x }}$		
J131	\div		

Traverse Closure Using Latitude and Longitude

Line	Instruction	Display	User Programming Instructions
J132	STO N		$\stackrel{\text { STO N }}{ }$
J133	RCL D		
J134	$\mathrm{RCL} \div \mathrm{R}$		
J135	RCL Z		
J136	RCL+ G		
J137	COS		
J138	\times		
J139	\rightarrow DEG		$\stackrel{\rightarrow}{ } \rightarrow$ DEG
J140	STO S		$\stackrel{\text { STO S }}{ }$
J141	RCL Z		
J142	RCL+ G		
J143	SIN		
J144	RCL× D		
J145	$\mathrm{RCL} \div \mathrm{N}$		
J146	RCL F		
J147	RCL+ B		
J148	COS		
J149	\div		
J150	\rightarrow DEG		$r \rightarrow$ DEG
J151	STO T		r STO T
J152	RCL S		
J153	2		
J154	\div		
J155	STO B		$\stackrel{\text { STO B }}{ }$
J156	RCL T		
J157	2		
J158	\div		
J159	STO C		$\stackrel{\text { STO C }}{ }$
J160	ISG Q		\leftarrow ISG Q
J161	GTO J098		
J162	RCL S		
J163	STO+ F		$r \mathrm{STO}+\mathrm{F}$
J164	RCL T		
J165	STO+ L		$\stackrel{\mathrm{STO}}{ }+\mathrm{L}$
J166	RCL F		
J167	\rightarrow HMS		$r \rightarrow \mathrm{HMS}$
J168	STO F		$\stackrel{\text { STO F }}{ }$
J169	CURRENT POINT		(Key in using EQN RCL C, RCL U, etc.)
J170	PSE		$\stackrel{\text { PSE }}{ }$
J171	LATITUDE		(Key in using EQN RCL L, RCL A, etc.)
J172	PSE		$\stackrel{\text { PSE }}{ }$
J173	VIEW F		\leftarrow VIEW F
J174	RCL L		
J175	\rightarrow HMS		$r \rightarrow \mathrm{HMS}$
J176	STO L		$\stackrel{\text { STO L }}{ }$
J177	LONGITUDE		(Key in using EQN RCL L, RCL O, etc.)

HP-35s Calculator Program
Traverse Closure Using Latitude and Longitude

Line	Instruction	Display	User Programming Instructions
J178	PSE		\rightarrow PSE
J179	VIEW L		\checkmark VIEW L
J180	RCL Z		
J181	RCL+ G		
J182	RCL+ G		
J183	\rightarrow HMS		$\stackrel{\rightarrow}{ } \rightarrow$ HMS
J184	STO Q		$\stackrel{\text { STO Q }}{ }$
J185	FWD AZIMUTH		(Key in using EQN RCL F, RCL W, etc.)
J186	PSE		$\stackrel{\text { PSE }}{ }$
J187	VIEW Q		\rightarrow VIEW Q
J188	RCL F		
J189	HMS \rightarrow		\rightarrow HMS \rightarrow
J190	STO F		$\stackrel{\text { STO F }}{ }$
J191	RCL L		
J192	HMS \rightarrow		\checkmark HMS \rightarrow
J193	STO L		$\stackrel{\text { STO L }}{ }$
J194	NEW LINE (0-1)		(Key in using EQN RCL N, RCL E, etc.)
J195	PSE		$\stackrel{\text { PSE }}{ }$
J196	1		
J197	STO J		$\stackrel{\text { STO J }}{ }$
J198	INPUT J		\checkmark INPUT J
J199	RCL J		
J200	$\mathrm{x}>0$?		$\xrightarrow{>}$? 04
J201	GTO J060		
J202	RCL F		
J203	RCL- Y		
J204	\rightarrow HMS		$\rightarrow \rightarrow \mathrm{HMS}$
J205	STO B		$\stackrel{\text { STO B }}{ }$
J206	RCL L		
J207	RCL- X		
J208	\rightarrow HMS		$r \rightarrow \mathrm{HMS}$
J209	STO C		$\stackrel{\text { STO C }}{ }$
J210	MISCLOSURE		(Key in using EQN RCL M, RCL I, etc.)
J211	PSE		\rightarrow PSE
J212	MISC LATITUDE		(Key in using EQN RCL M, RCL I, etc.)
J213	PSE		$\stackrel{\square}{\text { PSE }}$
J214	VIEW B		\leftarrow VIEW B
J215	MISC LONG		(Key in using EQN RCL M, RCL I, etc.)
J216	PSE		$\stackrel{\text { PSE }}{ }$
J217	VIEW C		\rightarrow VIEW C
J218	PROGRAM END		(Key in using EQN RCL P, RCL R, etc.)
J219	PSE		r PSE
J220	FS? 1		\leftarrow FLAGS 31
J221	CF 10		\leftarrow FLAGS 2.0
J222	RTN		4 RTN

Notes

(11) The resulting misclosure is expressed in angular terms, in HP notation, and is the amount by which the final latitude and longitude miss the starting values. To convert these values to meters, multiply the number of seconds of latitude by 30 , and the number of seconds of longitude by $30 \cos \phi$. To get the values in feet multiply by 100 and $100 \cos \phi$, respectively, instead. Note that these will be approximate.

Traverse Closure Using Latitude and Longitude

Theory

This program uses the Gauss Mid-Latitude formulae to calculate the position of the point at the end of a line, given the starting position (in latitude, ϕ, and longitude, λ), the forward azimuth at the known point, and the distance (in either feet or meters). This is the classical 'forward' problem of geodetic line computation.

For the forward solution, the Gauss Mid-Latitude formulae require iteration to reach a solution, but are the simplest and quickest geodetic formulae for this type of task. The formulae are accurate to better than $0.001^{\prime \prime}$ in latitude and longitude ($0.3 \mathrm{~m}, 0.1 \mathrm{ft}$), for worst-case lines up to 20 miles (32 km). If greater precision is required, use a different geodetic long-line formula (e.g., Robbins' or Rudoe's formulae).

Within the program, when a line's azimuth, θ, and distance, d, are first entered, they are converted to an initial, approximate latitude and longitude differences ($\Delta \phi_{0}$ and $\Delta \lambda_{0}$, respectively), using:

$$
\Delta \phi_{0}=\frac{d \cos \theta}{a} \quad \Delta \lambda_{0}=\frac{d \sin \theta}{a \cos \phi}
$$

The mid-latitude of the line, ϕ_{m}, is computed using: $\phi_{m}=\phi+\frac{\Delta \phi}{2}$
The change in azimuth over the length of the line, $\Delta \theta$, is computed using:

$$
\begin{equation*}
\tan \frac{\Delta \theta}{2}=\tan \frac{\Delta \lambda}{2} \sin \phi_{m} \sec \frac{\Delta \phi}{2} \tag{2}
\end{equation*}
$$

The radii of curvature in the meridian and prime vertical at the mid-point of the line, ρ_{m} and v_{m}, respectively, are calculated, using:

$$
\begin{align*}
& \rho_{m}=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi_{m}\right)^{\frac{3}{2}}} \tag{3}\\
& v_{m}=\frac{a}{\sqrt{\left(1-e^{2} \sin ^{2} \phi_{m}\right)}} \tag{4}
\end{align*}
$$

The differences in latitude and longitude are then calculated, using:

$$
\begin{align*}
& \Delta \phi=\frac{d}{\rho_{m}} \cos \left(\theta+\frac{\Delta \theta}{2}\right) \tag{5}\\
& \Delta \lambda=\frac{d}{v_{m}} \sin \left(\theta+\frac{\Delta \theta}{2}\right) \sec \phi_{m} \tag{6}
\end{align*}
$$

The values from equations [5] and [6] are returned to equation [1], and the process re-iterated until the changes in latitude and longitude are too small to worry about. In most cases, three iterations are sufficient, but the program uses four iterations, just to be sure.

Traverse Closure Using Latitude and Longitude

Distances are converted to ellipsoidal distances using the average height (h_{m}) for the region (or single line) entered. Entering zero for the height means the height scale factor has no effect on line length. The formula used is as follows, which is good to about 1 in 10,000 if the height is good to within 60 meters. The ellipsoidal distance is equal to the 'horizontal' distance times the height scale factor.

$$
\text { Height Scale Factor }=1-\left(\mathrm{h}_{\mathrm{m}} \times 0.1571 \times 10^{-6}\right)
$$

At the end of each line, the program displays the latitude and longitude of the end point, as well as the forward azimuth of the line at this point. For most lines of any significant length, this will differ from the forward azimuth at the start of the line. By converting this forward bearing to a back bearing (by adding or subtracting 180°), an angle measured at the end point can be used to obtain the forward azimuth of the next line. This is done manually by the user, and is not included in the program, as it is not something that will be needed by all users.

The program stores the initial point values, so that a comparison can be made at the end of a traverse, if desired. The difference is calculated and shown to the user.

Sample Computation

Traverse Data and Results

Point	Line	Azimuth	Distance	Latitude	Longitude
A				$40^{\circ} 022^{\prime 2} 2.000$	-83 $01^{\circ} 25^{\prime \prime} .000$
	A-B	$47^{\circ} 51^{\prime} 27^{\prime \prime}$	14,302.785		
B				$40^{\circ} 07{ }^{\prime} 35{ }^{\prime \prime} .189$	-82 ${ }^{\circ} 53^{\prime} 57 \mathrm{~F} .427$
	B-C	$140^{\circ} 32^{\prime} 56{ }^{\prime \prime}$	12,821.076		
C				$40^{\circ} 02^{\prime} 14{ }^{\prime \prime} .812$	-82 ${ }^{\circ} 48^{\prime} 14^{\prime \prime} .056$
	C-D	$235^{\circ} 28^{\prime} 29^{\prime \prime}$	15,093.269		
D				$39^{\circ} 57{ }^{\prime} 37{ }^{\prime \prime} .772$	$-82^{\circ} 56{ }^{\prime} 57 \mathrm{~T} .579$
	D-E	$274^{\circ} 28^{\prime} 12^{\prime \prime}$	6,394.974		
E				$39^{\circ} 57{ }^{\prime} 53{ }^{\prime \prime} .807$	$-83^{\circ} 01^{\prime} 26^{\prime \prime} .012$
	E-A	$0^{\circ} 09^{\prime} 50{ }^{\prime \prime}$	8,383.815		
A				$40^{\circ} 02^{\prime} 25^{\prime \prime} .001$	$-83^{\circ} 01^{\prime} 25^{\prime \prime} .001$
Misclosure	Latitude $(\phi)=0^{\circ} 00^{\prime} 00^{\prime \prime} .001$			$=0{ }^{\prime \prime} .0007=$	0.021 m
	Longitude (λ) = - $0^{\circ} 00^{\prime} 00^{\prime \prime} .001$			$=-0 " .0008$	-0.018 m

The angular misclosure around this figure was initially $2^{\prime \prime}$, of which about $1^{\prime \prime}$ was spherical excess. The linear misclosure when computed by other means is very close to the figures above.
Note that the misclosure is determined from very small differences at the least significant end of a long number, and so is affected by the limitations in the calculator's internal precision. Calculation of the same traverse using different equipment (e.g., a spreadsheet) should give the same results for locations and azimuths, but there may be some small differences in the misclosure.

Storage Registers Used

A $\quad \mathrm{a}=$ semi-major axis of ellipsoid $=6378137 \mathrm{~m}$ for WGS84/NAD83/GRS80
B $\quad \Delta \phi / 2=$ half the latitude difference for the line
C $\quad \Delta \lambda / 2=$ half the longitude difference for the line
D Distance, i.e., length of the line
E $\mathrm{e}^{2}=$ eccentricity of ellipsoid $=0.006699438$ for WGS84/NAD83/GRS80
F $\quad \phi$, latitude of starting point of each line
G $\quad \Delta \theta / 2=$ half the azimuth change for the line
H Height above ellipsoid, then the height-scale factor for line lengths. By default, height $=0$
J Response variable for whether another line is to be processed
$\mathbf{L} \quad \lambda$, longitude of starting point of each line
M unit to meters conversion factor; by default 1.0 for meters
$\mathbf{N} \quad v_{\mathrm{m}}=$ radius of curvature of the ellipsoid in the prime vertical at the mid-point of the line
Q counter for calculation loop (1.004 by default), then forward azimuth of line
R $\quad \rho_{\mathrm{m}}=$ radius of curvature of the ellipsoid in the meridian at the mid-point of the line
$\mathbf{S} \quad \Delta \phi$, the difference in latitude for the line
T $\quad \Delta \lambda$, the difference in longitude for the line
$\mathbf{X} \quad \lambda_{0}$, longitude of the initial point of the traverse
$\mathbf{Y} \quad \phi_{0}$, the latitude of the initial point of the traverse
$\mathbf{Z} \quad \theta$, azimuth at the start of the line

Labels Used

Label $\mathbf{J} \quad$ Length $=959 \quad$ Checksum $=$ D8B4
Use the length ($\mathrm{LN}=$) and Checksum $(\mathrm{CK}=$) values to check if program was entered correctly. Use the sample computation to check proper operation after program entry.

Flags Used

Flags 1 and 10 are used by this program. Flag 10 is set for this program, so that equations can be shown as prompts. Flag 1 is used to record the setting of Flag 10 before the program begins. At the end of the program, Flag 10 is reset to its original value, based on the value in Flag 1.

Ellipsoidal Values

WGS84/NAD83/GRS80

$$
\begin{array}{ll}
\mathrm{a}=6378137 \mathrm{~m} & \mathrm{e}^{2}=0.00669943800 \\
\mathrm{a}=6378206.4 \mathrm{~m} & \mathrm{e}^{2}=0.006768658 \\
\mathrm{a}=6378135 \mathrm{~m} & \mathrm{e}^{2}=0.006694317778 \\
\mathrm{a}=6378160 \mathrm{~m} & e^{2}=0.006694541855
\end{array}
$$

Traverse Closure Using Latitude and Longitude

Running the Program

To start the program, press XEQ J, then press ENTER.
The calculator briefly displays GAUSS M-L TRAV, then briefly displays CHECK-ENTER A.
The calculator stops and prompts with A?
Key in a value for ellipsoid semi-major axis, or ignore to retain default value (the WGS84 value).
Press R/S to continue.
The calculator displays CHECK-ENTER E briefly, then stops and prompts with E?
Key in a value for ellipsoid eccentricity, or ignore to retain default value (the WGS84 value).
Press R/S to continue.
The calculator briefly displays CHOOSE UNITS, the briefly displays FEET-METERS, then stops and prompts with M?

Enter unit conversion value, or ignore to retain setting for distances in meters (value of 1). Enter 0.3048 for International feet; 0.30480061 for US Survey feet; 0.201168 for chains, etc.

Press R/S to continue.
The calculator briefly displays AV HT ALL LINES (although the S won't be visible), then briefly displays ENTER HT, then stops and prompts with H?

Enter average height above the ellipsoid for all lines to be processed. Ignore to retail default value of zero. Enter the height in the units you selected at the FEET-METERS prompt.

Press R/S to continue.
The calculator briefly displays START POSITION, then briefly displays ENTER LAT, then stops and prompts with F ?

Enter the latitude (ϕ) of the starting point, in degrees, minutes and seconds, in HP notation (D.MMSSsss). Remember to include a negative sign, if in the southern hemisphere.

Press R/S to continue.
The calculator briefly displays ENTER LONG, then stops and prompts with L?
Enter the longitude (λ) of the starting point, in degrees, minutes and seconds, in HP notation (D.MMSSsss). Remember to include a negative sign, if in the western hemisphere.

Press R/S to continue.

Top of Loop Point

The calculator briefly displays ENTER AZIMUTH, then stops and prompts with Z?
Enter azimuth of the line at the starting point (θ) in HP notation.
Press R/S to continue.

Traverse Closure Using Latitude and Longitude

The calculator briefly displays ENTER DISTANCE, then stops and prompts with D?
Enter the length of the line in the units previous selected.
Press R/S to continue.
The calculator displays RUNNING for a while. Then the calculator briefly displays CURRENT POINT, the briefly displays LATITUDE, then stops and displays $\mathrm{F}=$ and the latitude of the far end of the line just entered, displayed in HP notation.

Press R/S to continue.
The calculator displays LONGITUDE briefly, then stops and displays $\mathrm{L}=$ and the longitude of the far end of the line just entered, displayed in HP notation.

Press R/S to continue.
The calculator displays FWD AZIMUTH briefly, then stops and displays $\mathrm{Q}=$ and the forward azimuth of the line at the far end of the line just entered, displayed in HP notation.

Press R/S to continue.
The calculator briefly displays NEW LINE (0-1), then stops and prompts with J ? and the default value of 1 . To go on to do the next line in the traverse, press R/S and the program will go to the Top of Loop Point, above. If all the sides have been entered, key in 0 and press R/S to calculate the misclosure.

The calculator displays MISCLOSURE briefly, the briefly displays MISC LATITUDE, then stops and displays $\mathrm{B}=$ and the misclosure in latitude (difference between start and end latitudes), displayed in HP notation.

Press R/S to continue.
The calculator briefly displays MISC LONGITUDE, then stops and shows $\mathrm{C}=$ and the misclosure in longitude (difference between start and end longitudes), displayed in HP notation.

Pressing R/S again will reset the flags, briefly display PROGRAM END, and end the program. If the program was called from another location, control will return to that point.

The misclosure in latitude will remain in the Y register, and the misclosure in longitude will remain in the X register, on the screen of the calculator. They can now be converted to whatever units interest you, after having converted them to decimal degrees using the HMS \rightarrow function.

Note that this misclosure is being determined from small differences at the least significant end of the calculator's storage capability, and so will be approximate at best. It will give an idea of the degree of magnitude of the misclosure, rather than an exact amount.

