HP-35s Calculator Program

Convert Lambert Conformal Conic Projection Co-ordinates (SPCS) to Latitude and Longitude

Programmer: Dr. Bill Hazelton
Date: September, 2010. Version: 1.1 Mnemonic: L for Lambert to Latitude and Longitude

Line	Instruction	Display	User Instructions
L001	LBL L		$\stackrel{\text { LBL L }}{ }$
L002	CLSTK		\rightarrow CLEAR 5
L003	FS? 10		\leftarrow FLAGS 3.0
L004	GTO L008		
L005	SF 1		\leftarrow FLAGS 11
L006	SF 10		\checkmark FLAGS 1.0
L007	GTO L009		
L008	CF 1		\leftarrow FLAGS 21
L009	LCC 2 LAT-LONG		(Key in using EQN RCL L, RCL C, etc.)
L010	PSE		$\stackrel{\text { PSE }}{ }$
L011	CL x		r CLEAR 1
L012	STO X		r STO X
L013	STO Y		$\stackrel{\text { STO Y }}{ }$
L014	STO P		r STO P
L015	STO Q		r STO Q
L016	STO C		$\stackrel{\text { STO C }}{ }$
L017	STO D		r STO D
L018	STO G		$\stackrel{\text { STO G }}{ }$
L019	STO H		r STO H
L020	6378137		a value for ellipsoid (WGS84/NAD83)
L021	STO A		$\stackrel{\text { STO A }}{ }$
L022	0.00669438		e^{2} value for ellipsoid (WGS84/NAD83)
L023	STO E		\rightarrow STO E
L024	CHECK-ENTER A		(Key in using EQN RCL C, RCL H, etc.)
L025	PSE		$\stackrel{\text { PSE }}{ }$
L026	INPUT A		\checkmark INPUT A
L027	CHECK-ENTER E		(Key in using EQN RCL C, RCL H, etc.)
L028	PSE		$\stackrel{\square}{4}$ PSE
L029	INPUT E		\leftarrow INPUT E
L030	RCL E		
L031	$\sqrt{ } \mathrm{x}$		
L032	STO O		\rightarrow STO O
L033	CHK-NTR LAT 0		(Key in using EQN RCL C, RCL H, etc.)
L034	PSE		$\stackrel{\text { PSE }}{ }$
L035	INPUT P		\checkmark InPUT P
L036	CHK-NTR LONG 0		(Key in using EQN RCL C, RCL H, etc.)
L037	PSE		\rightarrow PSE
L038	INPUT Q		\checkmark INPUT Q

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

Line	Instruction
L039	STD PARALLEL 1
L040	PSE
L041	INPUT C
L042	STD PARALLEL 2
L043	PSE
L044	INPUT D
L045	CHK - NTR E 0
L046	PSE
L047	INPUT G
L048	CHK - NTR N 0
L049	PSE
L050	INPUT H
L051	RCL P
L052	HMS \rightarrow
L053	STO P
L054	RCL Q
L055	HMS \rightarrow
L056	STO Q
L057	RCL C
L058	HMS \rightarrow
L059	STO C
L060	RCL D
L061	HMS \rightarrow
L062	STO D
L063	ENTER EASTING
L064	PSE
L065	INPUT X
L066	ENTER NORTHING
L067	PSE
L068	INPUT Y
L069	RCL G
L070	STO - X
L071	RCL H
L072	STO - Y
$* * * *$	Calculate m
L073	RCL C
L074	STO Z
L075	XEQ L224
L076	RCL Z
L077	STO R
****	Calculate m
L078	RCL D
L079	STO Z
L080	XEQ L224
L081	RCL Z

Line	Instruction
L082	STO S
****	Calculate t_{1}
L083	RCL C
L084	STO Z
L085	XEQ L237
L086	RCL Z
L087	STO U
****	Calculate t_{2}
L088	RCL D
L089	STO Z
L090	XEQ L237
L091	RCL Z
L092	STO V
****	Calculate t_{0}
L093	RCL P
L094	STO Z
L095	XEQ L237
L096	RCL Z
L097	STO T
****	Calculate n
L098	RCL R
L099	LN
L100	RCL S
L101	LN
L102	-
L103	RCL U
L104	LN
L105	RCL V
L106	LN
L107	-
L108	\div
L109	STO N
****	Calculate F
L110	RCL R
L111	RCL \div N
L112	RCL U
L113	RCL N
L114	y^{\times}
L115	\div
L116	STO J
****	Calculate r_{0}
L117	RCL A
L118	RCL \times
L119	RCL T
L120	RCL N

Line	Instruction
L121	y^{x}
L122	\times
L123	STO M
****	Calculate θ
L124	RCL X
L125	RCL M
L126	RCL - Y
L127	\div
L128	ATAN
L129	STO W
****	Calculate r
L130	RCL X
L131	x^{2}
L132	RCL M
L133	RCL - Y
L134	x^{2}
L135	+
L136	lx
L137	STO B
****	Calculate λ
L138	RCL W
L139	RCL \div N
L140	RCL + Q
L141	\rightarrow HMS
L142	STO L
****	Calculate ϕ
L143	90
L144	RCL B
L145	RCL \div A
L146	RCL \div J
L147	RCL N
L148	1/x
L149	y^{x}
L150	STO I
L151	ATAN
L152	2
L153	\times
L154	-
L155	STO F
L156	FN $=$ Z
L157	SOLVE F
L158	GTO L164
L159	CANNOT SOLVE
L160	PSE
L161	FOR LATITUDE

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

Line	Instruction
L162	PSE
L163	GTO L219
****	Calculate scale factor
L164	1
L165	RCL F
L166	SIN
L167	x 2
L168	RCL \times E
L169	-
L170	J
L171	RCL A
L172	x < > y
L173	\div
L174	RCL F
L175	COS
L176	\times
L177	RCL \div N
L178	RCL \div B
L179	l/x
L180	STO K
$* * * *$	Calculate γ
L181	RCL W
L182	\rightarrow HMS
L183	STO W
****	Show results
L184	SF 10
L185	RESULTS
L186	PSE
L187	LATITUDE
L188	PSE
L189	RCL F
L190	\rightarrow HMS
L191	STO F
L192	VIEW F
L193	LONGITUDE
L194	PSE
L195	VIEW L
L196	GRID CONV
L197	PSE
L198	VIEW W
L199	PT SCALE FACT
L200	PSE
L201	VIEW K
****	Check for next pt.
L202	0
L203	STO Z

Line	Instruction
L204	NEXT PT [0-1]
L205	PSE
L206	INPUT Z
L207	RCL Z
L208	x = 0 ?
L209	GTO L219
L210	NEW ZONE [0-1]
L211	PSE
L212	0
L213	STO Z
L214	INPUT Z
L215	RCL Z
L216	x = 0 ?
L217	GTO L063
L218	GTO L024
****	End of program
L219	PROGRAM END
L220	PSE
L221	FS? 1
L222	CF 10
L223	RTN
****	Subroutines
****	Compute m
L224	RCL Z
L225	COS
L226	RCL Z
L227	SIN
L228	x
L229	RCL× E
L230	1
L231	x < > y
L232	-
L233	lx
L234	\div
L235	STO Z
L236	RTN
****	Compute t
L237	1
L238	RCL Z
L239	SIN
L240	RCL \times O
L241	-
L242	RCL Z
L243	SIN
L244	RCL \times O
L245	1

Line	Instruction
L246	+
L247	\div
L248	RCL O
L249	2
L250	\div
L251	$\mathrm{y}^{\text {x }}$
L252	45
L253	RCL Z
L254	2
L255	\div
L256	-
L257	TAN
L258	x < > y
L259	\div
L260	STO Z
L261	RTN
****	********
****	Calculate ϕ
Z001	LBL Z
Z002	1
Z003	RCL F
Z004	STO Z
Z005	SIN
Z006	RCL \times O
Z007	-
Z008	RCL F
Z009	SIN
Z010	RCL \times O
Z011	1
Z012	+
Z013	\div
Z014	RCL O
Z015	2
Z016	\div
Z017	$y^{\text {x }}$
Z018	RCL \times I
Z019	ATAN
Z020	2
Z021	\times
Z022	90
Z023	x < > y
Z024	-
Z025	STO F
Z026	RCL- Z
Z027	RTN

Notes

(1) The program should be run in RPN mode, as results in ALG mode are unknown.
(2) Latitudes and longitudes should be entered in HP notation, i.e., DDD.MMSS. The grid convergence is displayed in HP notation.

The program may be used for any Lambert Conformal Conic projection, if the appropriate parameters are known. Similarly, any ellipsoid may be used, if its a and e^{2} parameters are known. Parameters for a wide range of ellipsoids and all SPCS Lambert zones are included at the end of this document.

Latitudes in the southern hemisphere are negative. Longitudes west of Greenwich are negative, i.e., all longitudes in North America. It is critical to enter the correct sign in calculator when entering values.
(5) Lines with **** are comments only, and should not be entered into the calculator. They are there to make program entry a little easier.

This program is long and often appears to be a stream of meaningless commands. This means that it may be more prone to errors when being entered. It is suggested that the program be entered using the given constants, tested (and the checksum checked), and when it is satisfactory, the values for the zone that are set to zero at the start of the program can be changed to those most suitable for the bulk of the expected work. See the Localization section at the end of the document.

When working in SPCS 1927, there are some small differences in latitudes between this program and the NGS conversion program. This may be caused by a different method of computing the distance from the pole in days gone by (see the discussion in the Theory section). The differences are small (less than 0.25 inch in all places tested thus far) and appear to be larger the further the point is from the pole. The conversions in SPCS 1983 agree to 0.001 m , which is the finest value the NGS program provides.

The scale factor is exactly 1.0000 when the point is on the standard parallels. It is less than 1.0000 between the standard parallels, and greater than 1.0000 outside the standard parallels.

Theory

Unlike the Transverse Mercator projection, where the forward and reverse co-ordinate conversions are pretty straight-forward, if long-winded, the solution to the conversion of grid co-ordinates to geographical co-ordinates on the Lambert Conformal Conic is a rather more complex affair, requiring an iterated solution of the latitude of the point.

Given a, $\mathrm{e}^{2}, \phi_{1}, \phi_{2}, \phi_{0}, \lambda_{0}, \mathrm{E}_{0}, \mathrm{~N}_{0}$, and the x and y co-ordinates of the point to be converted (E and N or X and Y, with false origin removed), we can calculate n, F and r_{0} from the USGS formulae given below. You substitute ϕ_{0}, ϕ_{1}, or ϕ_{2} into the formulae for m and t to get the appropriate values (denoted by subscripts) required. The value of e in the formula for t is $\sqrt{\mathrm{e}^{2}}$.

$$
\begin{aligned}
& \mathrm{r}_{0}=\mathrm{aF} \mathrm{t}_{0}^{\mathrm{n}} \\
& \mathrm{n}=\frac{\ln \mathrm{m}_{1}-\ln \mathrm{m}_{2}}{\ln \mathrm{t}_{1}-\ln \mathrm{t}_{2}}
\end{aligned}
$$

(constant of the projection or cone)

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{m}_{1}}{\mathrm{nt}_{1}{ }^{\mathrm{n}}} \\
& \mathrm{~m}=\frac{\cos \phi}{\sqrt{1-\mathrm{e}^{2} \sin ^{2} \phi}} \\
& \mathrm{t}=\frac{\tan \left(\frac{\pi}{4}-\frac{\phi}{2}\right)}{\left(\frac{1-\mathrm{e} \sin \phi}{1+\mathrm{e} \sin \phi}\right)^{\frac{e}{2}}}
\end{aligned}
$$

The following values may be computed using the co-ordinates (less the false origin values), as follows:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{E}-\mathrm{E}_{0} \\
& \mathrm{y}=\mathrm{N}-\mathrm{N}_{0} \\
& \mathrm{r}=\sqrt{\mathrm{x}^{2}+\left(\mathrm{r}_{0}-\mathrm{y}\right)^{2}} \\
& \theta=\arctan \left(\frac{\mathrm{x}}{\mathrm{r}_{0}-\mathrm{y}}\right) \\
& \lambda=\frac{\theta}{\mathrm{n}}+\lambda_{0}
\end{aligned}
$$

Then we have to undertake an iterative solution to the following equation, solving for ϕ with a rough estimate for ϕ, substituting that value back into the equation and solving for a better value of ϕ. When there is no significant change in ϕ, we can stop the process.

A good starting estimate for ϕ is $\phi=\frac{\pi}{2}-2 \arctan \mathrm{t}$.
The formula that is being iterated is:

$$
\phi=\frac{\pi}{2}-2 \arctan \left(\mathrm{t}\left(\frac{1-\mathrm{e} \sin \phi}{1+\mathrm{e} \sin \phi}\right)^{\mathrm{e} / 2}\right)
$$

where

$$
\mathrm{t}=\left(\frac{\mathrm{r}}{\mathrm{aF}}\right)^{1 / \mathrm{n}}
$$

Using the following formulae, the other various required quantities can be calculated

$$
\begin{array}{ll}
\gamma=\theta & \text { (grid convergence at the point) } \\
\mathrm{k}=\frac{\mathrm{n} \mathrm{r}}{v \cos \phi} & \text { (scale factor at the latitude } \phi)
\end{array}
$$

where $v=$ the radius of the ellipsoid at the parallel of latitude ϕ

Lambert Conformal Conic Co-ordinates to Latitude/Longitude
Note that n, F and r_{0} are constants for a particular map or SPCS zone and only need to be computed once.
The iterative solution lends itself to the SOLVE capability in the calculator, and allows this part to be programmed economically and fairly simply, albeit at the cost of an additional label. When it was attempted to use SOLVE on an equation, the calculator ran out of memory, as using equations in SOLVE is memory hungry.

To avoid iterations, you can use the following series expansion (note that Snyder gives some clues for faster implementation of this expansion on page 19 of his book). I have not tried this out, so cannot comment on its effectiveness, but it may be better suited to being run in the HP-33S calculator (no loops required!).

$$
\begin{aligned}
\phi=\chi & +\left(\frac{\mathrm{e}^{2}}{2}+\frac{5 \mathrm{e}^{4}}{24}+\frac{\mathrm{e}^{6}}{12}+\frac{13 \mathrm{e}^{8}}{360}+\ldots\right) \sin 2 \chi \\
& +\left(\frac{7 \mathrm{e}^{4}}{48}+\frac{29 \mathrm{e}^{6}}{240}+\frac{811 \mathrm{e}^{8}}{11520}+\ldots\right) \sin 4 \chi \\
& +\left(\frac{7 \mathrm{e}^{6}}{120}+\frac{81 \mathrm{e}^{8}}{1120}+\ldots\right) \sin 6 \chi+\left(\frac{4279 \mathrm{e}^{8}}{161280}+\ldots\right) \sin 8 \chi
\end{aligned}
$$

where

$$
\chi=\frac{\pi}{2}-2 \arctan t
$$

If you are using the tables for SPCS 27 and these were derived from geocentric latitudes, you can use the same formulae, except that t for calculations leading to n, F and r_{0} (formulae given above) is calculated using:

$$
\mathrm{t}=\tan \left(\frac{\pi}{2}-\frac{\phi_{\mathrm{g}}}{2}\right)
$$

where

$$
\phi_{g}=\frac{\pi}{2}-2 \arctan t
$$

and the t in this equation is derived from $\quad \mathrm{t}=\left(\frac{\mathrm{r}}{\mathrm{aF}}\right)^{1 / \mathrm{n}}$
The 1927 solutions, based on slightly different calculation of ϕ and hence t, lead to slightly different results in the calculation of the final latitude from the co-ordinates. The differences are apparent in the example calculations given. You may want to check the differences across the region being converted and apply an average correction to the values computed by the calculator, or do the 1927 conversions on-line.
(Note that the SPCS 27 has co-ordinates in US Survey feet, and uses the Clarke 1866 ellipsoid. The SPCS 83 has co-ordinates in meters, and uses the GRS80 spheroid, which effectively is the same as WGS-84. Some states have either the US Survey foot or the International foot as alternative distance units; check which one is in use in the state you are working in at any particular time. Note that there is a datum shift between the two systems (1927 and 1983) as well, and that you cannot really do a direct linear shift between them.

Lambert Conformal Conic Co-ordinates to Latitude/Longitude
As you can see from the tables below, most of the SPCS Lambert zones adopt ϕ_{0} as having a Y or N value of zero. It is chosen so as to be well south of the limits of the zone. For most of the Lambert zones, the central meridian gets a value of $2,000,000$ feet (SPCS 27), and a range of meter values for SPCS 83. See the tables below for exact data.

With the two standard parallels for the zone, it doesn't matter which is used for ϕ_{1} and which for ϕ_{2}. Provided that the values for $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{~m}_{1}$ and m_{2} are calculated and applied consistently, n, F and r_{0} turn out the same either way. For convenience in the northern hemisphere, the southern parallel is used as ϕ_{1}, but this is not necessary for proper operation of the program.

Sample Computations

Example 1

Using the SPCS $1983\left(\mathrm{a}=6,378,137 \mathrm{~m}, \mathrm{e}^{2}=0.0066943800\right)$, the following results are obtained.
Ohio North Zone, 3401: True Origin: $\phi_{0}=39^{\circ} 40^{\prime}, \quad \lambda_{0}=-82^{\circ} 30^{\prime}$;
Standard Parallels: $\phi_{1}=40^{\circ} 26^{\prime}, \phi_{2}=41^{\circ} 42^{\prime}$;
False Origin: $\mathrm{E}_{0}=600,000.000 \mathrm{~m}, \mathrm{~N}_{0}=0.000 \mathrm{~m}$.

Easting $(E)=542,668.995 \mathrm{~m}$	Northing $(\mathrm{N})=47,416.966 \mathrm{~m}$
Latitude $=40^{\circ} 05^{\prime} 30^{\prime \prime}$	Longitude $=-83^{\circ} 10^{\prime} 20^{\prime \prime}$

Grid Convergence $(\gamma)=-0^{\circ} 26^{\prime} 29.82^{\prime \prime}$ Point Scale Factor $(k)=1.00008297$

Example 2

Using the SPCS $1927\left(a=20,925,832.2 \mathrm{ft}, \mathrm{e}^{2}=0.00676866\right)$, the following results are obtained.
Ohio North Zone, 3401:True Origin: $\phi_{0}=39^{\circ} 40^{\prime}, \quad \lambda_{0}=-82^{\circ} 30^{\prime}$;
Standard Parallels: $\phi_{1}=40^{\circ} 26^{\prime}, \phi_{2}=41^{\circ} 42^{\prime}$;
False Origin: $\mathrm{E}_{0}=2,000,000.000 \mathrm{ft}, \mathrm{N}_{0}=0.000 \mathrm{ft}$.
Easting $(\mathrm{E})=1,811,901.577 \mathrm{ft} \quad$ Northing $(\mathrm{N})=155,564.399 \mathrm{ft}$
Latitude $=40^{\circ} 05^{\prime} 30^{\prime \prime} .0000 \quad$ Longitude $=-83^{\circ} 10^{\prime} 20^{\prime \prime} .0000$
Grid Convergence $(\gamma)=-0^{\circ} 26^{\prime} 29.82^{\prime \prime}$ Point Scale Factor $(k)=1.00008297$
Note: the NGS conversion program gave the same results, except for the latitude, which it gave as $40^{\circ} 05^{\prime}$ $30^{\prime \prime} .00006$, a difference of 0.006 ft (about 0.07 inches or 1.8 mm), and $-83^{\circ} 10^{\prime} 20^{\prime \prime} .00001$ for the longitude, a difference of 0.00075 ft (about 0.009 inches or 0.3 mm). Testing other points in this zone indicate a consistent difference of about this amount. This may be because of the different method of computing the distances from the pole (r and r_{0}) in earlier computations of the zones. Note that the NGS conversion from State Plane to geographical co-ordinates does not provide the grid convergence and scale factor. To get this, you will need to use a different converter.

Example 3

Using the SPCS $1927\left(\mathrm{a}=20,925,832.2 \mathrm{ft}, \mathrm{e}^{2}=0.00676866\right)$, the following results are obtained.
California III Zone (0403), SPCS 1927, $\phi_{0}=36^{\circ} 30^{\prime}, \lambda_{0}=-120^{\circ} 30^{\prime}$;
$\phi_{1}=37^{\circ} 04^{\prime}, \quad \phi_{2}=38^{\circ} 26^{\prime} ;$
$\mathrm{E}_{0}=2,000,000.000 \mathrm{ft}, \mathrm{N}_{0}=0.000 \mathrm{ft}$.
Easting $(E)=2,216,169.136 \mathrm{ft}$
Latitude $=37^{\circ} 25^{\prime} 40^{\prime \prime} .0000$
Grid Convergence $(\gamma)=0^{\circ} 27^{\prime} 20.8^{\prime \prime} \quad$ Point Scale Factor $(k)=0.99994501$
Note: the NGS conversion program gave the same results, except for the latitude, which it gave as $37^{\circ} 25^{\prime}$ 40 ". 000 12 , a difference of 0.012 ft (about 0.14 inches or 3.6 mm). Testing other points in this zone indicate a consistent difference of about this amount. This may be because of the different method of computing the distances from the pole (r and r_{0}) in earlier computations of the zones. Note that the NGS conversion from State Plane to geographical co-ordinates does not provide the grid convergence and scale factor. To get this, you will need to use a different converter.

Example 4

Using the SPCS $1983\left(\mathrm{a}=6,378,137 \mathrm{~m}, \mathrm{e}^{2}=0.0066943800\right)$, the following results are obtained.
California III Zone (0403), SPCS 1983, $\phi_{0}=36^{\circ} 30^{\prime}, \lambda_{0}=-120^{\circ} 30^{\prime}$;
$\phi_{1}=37^{\circ} 04^{\prime}, \quad \phi_{2}=38^{\circ} 26^{\prime} ;$
$\mathrm{E}_{0}=2,000,000.000 \mathrm{~m}, \mathrm{~N}_{0}=500,000.000 \mathrm{~m}$.
Easting $(\mathrm{E})=2,065,886.861 \mathrm{~m} \quad$ Northing $(N)=603,227.485 \mathrm{~m}$
Latitude $=37^{\circ} 25^{\prime} 40^{\prime \prime} \quad$ Longitude $=-119^{\circ} 45^{\prime} 20^{\prime \prime}$
Grid Convergence $(\gamma)=0^{\circ} 27^{\prime} 20.8^{\prime \prime} \quad$ Point Scale Factor $(k)=0.99994501$

Running the Program

Press XEQ L, then press ENTER to start the program. The calculator briefly displays LCC 2 LATLONG, then briefly shows CHECK - ENTER A. The program then stops and displays the prompt for entering the semi-major axis value, while displaying the current default value:

$$
\begin{aligned}
& \text { A? } \\
& 6,378,137.0000 \quad \text { (This is for GRS80/WGS84/NAD83) }
\end{aligned}
$$

If you are happy with this value for the semi-major axis of the ellipsoid, press R/S to continue. Otherwise. Key in a different value (for a different ellipsoid) and press R/S to continue.

The calculator briefly displays CHECK-ENTER E. The program then stops and displays the prompt for entering the eccentricity of the ellipsoid, e:

E?
0.00669438
(This is for GRS80/WGS84/NAD83)

Lambert Conformal Conic Co-ordinates to Latitude/Longitude
If this value for the eccentricity is correct, press R/S to continue. Otherwise, key in a different value (for a different ellipsoid) and press R/S to continue.

The calculator briefly displays CHK - NTR LAT 0 . The program then stops and displays the prompt for entering the origin latitude for the co-ordinate, ϕ_{0} :

```
P?
0.0000
```

Key in the correct latitude in HP notation (DDD.MMSS), and press R/S to continue. In this case, key in 39.40 for Ohio North.

The calculator briefly displays CHK - NTR LONG 0 . The program then stops and displays the prompt for entering the longitude of the central meridian of the projection, λ_{0}. Note that in the western hemisphere, this will be a negative value, and should be in HP notation (DDD.MMSS).

$$
\begin{aligned}
& \text { Q? } \\
& 0.0000
\end{aligned}
$$

Key in the correct longitude, in HP notation and remembering the sign, then press R/S to continue. In this case, key in -82.30 for Ohio North

The calculator briefly displays STD PARALLEL 1 . The program then stops and displays the prompt for entering the latitude of one of the standard parallels for the projection, ϕ_{1}. The value should be entered in HP notation.

C?
0.000000

Key in the correct value and press R/S to continue. In this case, key in 40.26 and press R / S to continue.
The calculator briefly displays STD PARALLEL 2. The program then stops and displays the prompt for entering the latitude of the other standard parallel for the projection, ϕ_{2}. The value should be entered in HP notation.

D?
0.000000

Key in the correct value and press R/S to continue. In this case, key in 41.42 and press R / S to continue.
The calculator briefly displays CHK-NTR E 0 . The program then stops and prompts for the false easting value, or the easting offset. This is the value of the easting at the central meridian $\left(\lambda_{0}\right)$, denoted E_{0}.

G?

0.0000

Key in the correct value, and press R/S to continue. In this case, key in 600000.0 and press R/S.
The calculator briefly displays CHK - NTR N 0 . The program then stops and prompts for entry of the false northing value, or the northing offset. This is the value of the northing co-ordinate at ϕ_{0}, λ_{0}.

H ?

0.0000

If this is the correct value (for some zones, it is zero), press R / S to continue. If a different value is desired, key in the value and press R/S. In this case, just press R/S. This is the N_{0} value for Ohio North.

Lambert Conformal Conic Co-ordinates to Latitude/Longitude
The calculator briefly displays ENTER EASTING. The program stops and displays the prompt for entering the easting of the point to be converted. This should be entered in HP notation.

X?

0.0000

Key in the easting of the point and press R/S to continue. In this case, key in 542668.995 and press R/S.
The calculator briefly displays ENTER NORTHING. The program then stops and displays the prompt for entering the northing of the point to be converted. This should be entered in HP notation.

```
Y?
0.0000
```

Key in the longitude of the point in HP notation and press R/S to continue. In this case, key in 47416.966 and press R/S/

The program displays RUNNING for a short while, then SOLVING for a while, then displays RESULTS briefly, followed by LATITUDE briefly. The program then stops and displays the latitude value of the point. In this case, the calculator displays:

$$
\begin{aligned}
& \mathrm{F}= \\
& 40.05300000
\end{aligned}
$$

This is the latitude of the point, in HP notation (DDD.MMSSsss, i.e., $40^{\circ} 05^{\prime} 30^{\prime \prime} .00 \mathrm{~N}$). Press R/S to continue. The calculator briefly displays LONGITUDE, then stops and displays the northing value of the point. In this case, the calculator displays:

$$
\begin{aligned}
& \mathrm{L}= \\
& -83.10200000
\end{aligned}
$$

This is the longitude of the point, in HP notation (DDD.MMSSsss, i.e., $83^{\circ} 10^{\prime} 20^{\prime \prime} .00 \mathrm{~W}$). Press R/S to continue. The calculator briefly displays GRID CONV, then stops and displays the grid convergence value in HP notation. In this case, the calculator displays:

$$
\begin{aligned}
& \mathrm{K}= \\
& -0.26298198
\end{aligned}
$$

This is the grid convergence in HP notation, and is $-0^{\circ} 26^{\prime} 29^{\prime \prime} .82$ in more conventional notation. Press R/S to continue. The calculator briefly displays PT SCALE FACT, then stops and displays the point scale factor of the point on the Lambert Conformal Conic projection. In this case, the calculator displays:

$$
\begin{aligned}
& \mathrm{W}= \\
& 1.00008297
\end{aligned}
$$

This is the point scale factor. Press R/S to continue.
You now have the choice of running one or more additional points. The calculator briefly displays NEXT PT [$0-1$], then stops and displays the prompt for answering questions:

Z?
0.0000

If you want to quit the program, just press R/S, the calculator briefly displays PROGRAM END and then comes to an end, returning to the point whence it was called, or to normal operations. If you want to enter more points, key in 1 and press R/S. In this case, the calculator then prompts to see if you want to use the same parameters. The calculator briefly displays NEW ZONE [$0-1$], then stops at the question prompt:

Z?

0.0000

If you want to go to a new zone, key in 1 and press R / S, and the calculator will take you to the point where you can change any of the values (Point A above), starting with the ellipsoid parameters. If you want to work in the same zone already entered, just press R/S, and the program will take you to "Point B" and prompt for the latitude of the point to be converted, and continue from there. You can go around the program as many times as necessary.

Reference

Snyder, J.P., 1987. Map Projections-A Working Manual. U.S. Geological Survey Professional Paper 1395. Washington: US Government Printing Office.

Storage Registers Used

A Semi-major axis of the ellipsoid being used, a
B $\quad \mathrm{r}$, distance from the pole to the point
C $\quad \phi_{1}$, one of the two standard parallels of the projection
D $\quad \phi_{2}$, one of the two standard parallels of the projection
E Eccentricity of the ellipsoid, e^{2}
F $\quad \phi$, latitude of the point being converted
G $\quad \mathrm{E}_{0}$, the false easting or easting offset
H $\quad \mathrm{N}_{0}$, the false northing, or northing offset, at $\phi_{0}, \boldsymbol{\lambda}_{\mathbf{0}}$
I Temporary variable t in the latitude solution.
J F, an internal computed value
$\mathbf{K} \quad$ point scale factor, k
$\mathbf{L} \quad \lambda$, longitude of the point being converted
M $\quad r_{0}$, distance from the pole to ϕ_{0}
$\mathbf{N} \quad \mathrm{n}$, the constant of the projection or cone
O e, the square root of the eccentricity of the ellipsoid.
$\mathbf{P} \quad \phi_{0}$, the latitude of the co-ordinate origin on the projection
Q $\quad \lambda_{0}$, the central meridian of the projection
$\mathbf{R} \quad \mathrm{m}_{1}$, an internal computed value
$\mathbf{S} \quad \mathrm{m}_{2}$, an internal computed value
T $\quad \mathrm{t}_{0}$, an internal computed value
U $\quad t_{1}$, an internal computed value
$\mathbf{V} \quad t_{2}$, an internal computed value
W θ, the angle between the line from the pole to the point, and the central meridian, also the grid convergence
$\mathbf{X} \quad$ Easting co-ordinate of converted point
Y Northing co-ordinate of converted point
Z Response variable for checking if another point, as well as passing values to subroutines.

Statistical Registers: not used

Labels Used

Label $\mathbf{L} \quad$ Length $=1065 \quad$ Checksum $=7096$
Label $\mathbf{Z} \quad$ Length $=87 \quad$ Checksum $=1$ E33
Use the length ($\mathrm{LN}=$) and Checksum ($\mathrm{CK}=$) values to check if program was entered correctly. Use the sample computation to check proper operation after entry.

Flags Used

Flags 1 and 10 are used by this program. Flag 10 is set for this program, so that equations can be shown as prompts. Flag 1 is used to record the setting of Flag 10 before the program begins. At the end of the program, Flag 10 is reset to its original value, based on the value in Flag 1.

Parameters for the Computations

Ellipsoids

There are a range of ellipsoids in common or former use. The table below has the a and e^{2} values for a number of common (and less common) ellipsoids.

Ellipsoid	a	Semi-major Axis
end	Eccentricity	
GRS80-WGS94-NAD83	6378137 m	0.00669438
Clarke 1866 (NAD27)	6378206.4 m	0.00676866
Clarke 1866 (NAD27)	20925832.2 ft	0.00676866
ANS (Australian)	6378160 m	0.006694541855
Airy 1830	6377563.4 m	0.00667054
Bessel 1841	6377397.16 m	0.006674372
Clarke 1880	6378249.15 m	0.006803511
Everest 1830	6377276.35 m	0.006637847
Fischer 1960 (Mercury)	6378166 m	0.006693422
Fischer 1968	6378150 m	0.006693422
Hough 1956	6378270 m	0.00672267
International	6378388 m	0.00672267
Krassovsky 1940	6378245 m	0.006693422
South American 1960	6378160 m	0.006694542
GRS 1967	6378160 m	0.006694605
GRS 1975	6378140 m	0.006694385
WGS 60	6378165 m	0.006693422
WGS 66	6378145 m	0.006694542
WGS 72	6378135 m	0.006694317778
WGS 84	6378137 m	0.00669438

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

State Plane Co-ordinate System (SPCS) 1983

Several US states use the Lambert Conformal Conic projection for SPCS 1983. The various parameters for each zone in the 1983 system are given in the table below. Use these parameters with the program, together with the GRS80/WGS84/NAD83 ellipsoid parameters, in meters.

	Origin					
	Standard Parallels		Longitude	Latitude	False East	False North
	ϕ_{1} South	ϕ_{2} North	λ_{0} West	ϕ_{0} North	E_{0} (m)	N_{0} (m)
Alaska						
Zone 10	$51^{\circ} 50$	$53^{\circ} 50^{\prime}$	$176^{\circ} 00^{\prime}$	$51^{\circ} 00^{\prime}$	1,000,000.00	0.00
Arkansas						
North	$34^{\circ} 56$	$36^{\circ} 14^{\prime}$	$92^{\circ} 00^{\prime}$	$34^{\circ} 20^{\prime}$	400,000.00	0.00
South	$33^{\circ} 18^{\prime}$	$34^{\circ} 46^{\prime}$	$92^{\circ} 00^{\prime}$	$32^{\circ} 40^{\prime}$	400,000.00	400,000.00
California						
I	$40^{\circ} 00^{\prime}$	$41^{\circ} 40^{\prime}$	$122^{\circ} 00^{\prime}$	$39^{\circ} 20^{\prime}$	2,000,000.00	500,000.00
II	$38^{\circ} 20^{\prime}$	$39^{\circ} 50^{\prime}$	$122^{\circ} 00^{\prime}$	$37^{\circ} 40^{\prime}$	2,000,000.00	500,000.00
III	$37^{\circ} 04^{\prime}$	$38^{\circ} 26^{\prime}$	$120^{\circ} 30^{\prime}$	$36^{\circ} 30^{\prime}$	2,000,000.00	500,000.00
IV	$36^{\circ} 00^{\prime}$	$37^{\circ} 15^{\prime}$	$119^{\circ} 00^{\prime}$	$35^{\circ} 20^{\prime}$	2,000,000.00	500,000.00
V	$34^{\circ} 02^{\prime}$	$35^{\circ} 28^{\prime}$	$118^{\circ} 00^{\prime}$	$33^{\circ} 30^{\prime}$	2,000,000.00	500,000.00
VI	$32^{\circ} 47^{\prime}$	$33^{\circ} 53^{\prime}$	$116^{\circ} 15^{\prime}$	$32^{\circ} 10^{\prime}$	2,000,000.00	500,000.00

Colorado

| North | $39^{\circ} 43^{\prime}$ | $40^{\circ} 47^{\prime}$ | $105^{\circ} 30^{\prime}$ | $39^{\circ} 20^{\prime}$ | $914,401.83$ | $304,800.61$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Central | $38^{\circ} 27^{\prime}$ | $39^{\circ} 45^{\prime}$ | $105^{\circ} 30^{\prime}$ | $37^{\circ} 50^{\prime}$ | $914,401.83$ | $304,800.61$ |
| South | $37^{\circ} 14^{\prime}$ | $38^{\circ} 26^{\prime}$ | $105^{\circ} 30^{\prime}$ | $36^{\circ} 40^{\prime}$ | $914,401.83$ | $304,800.61$ |
| Connecticut | $41^{\circ} 12^{\prime}$ | $41^{\circ} 52^{\prime}$ | $72^{\circ} 45^{\prime}$ | $40^{\circ} 50^{\prime}$ | 304800.61 | 152400.30 |

Florida

North	$29^{\circ} 35^{\prime}$	$30^{\circ} 45^{\prime}$	$84^{\circ} 30^{\prime}$	$29^{\circ} 00^{\prime}$	600000.00	0.00
Iowa						
North	$42^{\circ} 04^{\prime}$	$43^{\circ} 16^{\prime}$	$93^{\circ} 30^{\prime}$	$41^{\circ} 30^{\prime}$	1500000.00	1000000.00
South	$40^{\circ} 37^{\prime}$	$41^{\circ} 47^{\prime}$	$93^{\circ} 30^{\prime}$	$40^{\circ} 00^{\prime}$	500000.00	0.00

Kansas

| North | $38^{\circ} 43^{\prime}$ | $39^{\circ} 47^{\prime}$ | $98^{\circ} 00^{\prime}$ | $38^{\circ} 20^{\prime}$ | 400000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| South | $37^{\circ} 16^{\prime}$ | $38^{\circ} 34^{\prime}$ | $98^{\circ} 30^{\prime}$ | $36^{\circ} 40^{\prime}$ | 400000.00 | 400000.00 |

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

	Origin				False East E_{0} (m)	False North N_{0} (m)
	Standard Parallels		Longitude	Latitude		
	ϕ_{1} South	ϕ_{2} North	λ_{0} West	ϕ_{0} North		
Kentucky						
North	$37^{\circ} 58^{\prime}$	$38^{\circ} 58^{\prime}$	$84^{\circ} 15^{\prime}$	$37^{\circ} 30^{\prime}$	500,000.00	0.00
South	$36^{\circ} 44^{\prime}$	$37^{\circ} 56^{\prime}$	$85^{\circ} 45^{\prime}$	$36^{\circ} 20^{\prime}$	500,000.00	500,000.00
Louisiana						
North	$31^{\circ} 10^{\prime}$	$32^{\circ} 40^{\prime}$	$92^{\circ} 30^{\prime}$	$30^{\circ} 30^{\prime}$	1,00,0000.00	0.00
South	$29^{\circ} 18^{\prime}$	$30^{\circ} 42^{\prime}$	$91^{\circ} 20^{\prime}$	$28^{\circ} 30^{\prime}$	1,000,000.00	0.00
Offshore	$26^{\circ} 10^{\prime}$	$27^{\circ} 50^{\prime}$	$91^{\circ} 20^{\prime}$	$25^{\circ} 30^{\prime}$	1,000,000.00	0.00
Maryland	$38^{\circ} 18^{\prime}$	$39^{\circ} 27^{\prime}$	$77^{\circ} 00^{\prime}$	$37^{\circ} 40^{\prime}$	400,000.00	0.00
Massachusetts						
Mainland	$41^{\circ} 43{ }^{\prime}$	$42^{\circ} 41^{\prime}$	$71^{\circ} 30^{\prime}$	$41^{\circ} 00$	200,000.00	750,000.00
Island	$41^{\circ} 17^{\prime}$	$41^{\circ} 29^{\prime}$	$70^{\circ} 30^{\prime}$	$41^{\circ} 00^{\prime}$	500,000.00	0.00
Michigan						
North	$45^{\circ} 29^{\prime}$	$47^{\circ} 05^{\prime}$	$87^{\circ} 00^{\prime}$	$44^{\circ} 47^{\prime}$	8,000,000.00	0.00
Central	$44^{\circ} 11^{\prime}$	$45^{\circ} 42^{\prime}$	$84^{\circ} 22^{\prime}$	$43^{\circ} 19{ }^{\prime}$	6,000,000.00	0.00
South	$42^{\circ} 06^{\prime}$	$43^{\circ} 40^{\prime}$	$84^{\circ} 22^{\prime}$	$41^{\circ} 30^{\prime}$	4,000,000.00	0.00
Minnesota						
North	$47^{\circ} 02^{\prime}$	$48^{\circ} 38^{\prime}$	$93^{\circ} 06^{\prime}$	$46^{\circ} 30^{\prime}$	800,000.00	100000.00
Central	$45^{\circ} 37{ }^{\prime}$	$47^{\circ} 03^{\prime}$	$94^{\circ} 15^{\prime}$	$45^{\circ} 00^{\prime}$	800,000.00	100,000.00
South	$43^{\circ} 47^{\prime}$	$45^{\circ} 13^{\prime}$	$94^{\circ} 00^{\prime}$	$43^{\circ} 00^{\prime}$	800,000.00	100,000.00
Montana	$45^{\circ} 00^{\prime}$	$49^{\circ} 00^{\prime}$	$109^{\circ} 30^{\prime}$	$44^{\circ} 15^{\prime}$	600,000.00	0.00
Nebraska	$40^{\circ} 00^{\prime}$	$43^{\circ} 00^{\prime}$	$100^{\circ} 00^{\prime}$	$39^{\circ} 50^{\prime}$	500,000.00	0.00
New York						
Long Island	$40^{\circ} 40^{\prime}$	$41^{\circ} 02{ }^{\prime}$	$74^{\circ} 00^{\prime}$	$40^{\circ} 10^{\prime}$	300,000.00	0.00
North Carolina	$34^{\circ} 20^{\prime}$	$36^{\circ} 10^{\prime}$	$79^{\circ} 00^{\prime}$	$33^{\circ} 45^{\prime}$	609,601.22	0.00
North Dakota						
North	$47^{\circ} 26^{\prime}$	$48^{\circ} 44^{\prime}$	$100^{\circ} 30^{\prime}$	$47^{\circ} 00^{\prime}$	600,000.00	0.00
South	$46^{\circ} 11^{\prime}$	$47^{\circ} 29^{\prime}$	$100^{\circ} 30^{\prime}$	$45^{\circ} 40^{\prime}$	600,000.00	0.00
Ohio						
North	$40^{\circ} 26^{\prime}$	$41^{\circ} 42^{\prime}$	$82^{\circ} 30^{\prime}$	$39^{\circ} 40^{\prime}$	600,000.00	0.00
South	$38^{\circ} 44^{\prime}$	$40^{\circ} 02^{\prime}$	$82^{\circ} 30^{\prime}$	$38^{\circ} 00^{\prime}$	600,000.00	0.00

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

	Origin				False East E_{0} (m)	False North N_{0} (m)
	Standard Parallels		Longitude	Latitude		
	ϕ_{1} South	ϕ_{2} North	λ_{0} West	ϕ_{0} North		
Oklahoma						
North	$35^{\circ} 34^{\prime}$	$36^{\circ} 46$	$98^{\circ} 00^{\prime}$	$35^{\circ} 00^{\prime}$	600,000.00	0.00
South	$33^{\circ} 56^{\prime}$	$35^{\circ} 14^{\prime}$	$98^{\circ} 00^{\prime}$	$33^{\circ} 20^{\prime}$	600,000.00	0.00
Oregon						
North	$44^{\circ} 20^{\prime}$	$46^{\circ} 00^{\prime}$	$120^{\circ} 30^{\prime}$	$43^{\circ} 40^{\prime}$	2,500,000.00	0.00
South	$42^{\circ} 20^{\prime}$	$44^{\circ} 00^{\prime}$	$120^{\circ} 30^{\prime}$	$41^{\circ} 40^{\prime}$	1,500,000.00	0.00
Pennsylvania						
North	$40^{\circ} 53^{\prime}$	$41^{\circ} 57{ }^{\prime}$	$77^{\circ} 45^{\prime}$	$40^{\circ} 10^{\prime}$	600,000.00	0.00
South	$39^{\circ} 56^{\prime}$	$40^{\circ} 58^{\prime}$	$77^{\circ} 45^{\prime}$	$39^{\circ} 20^{\prime}$	600,000.00	0.00
Puerto Rico and Virgin Islands						
1	$18^{\circ} 02^{\prime}$	$18^{\circ} 26^{\prime}$	$66^{\circ} 26^{\prime}$	$17^{\circ} 50$	200,000.00	200,000.00
2 (St. Croix)	$18^{\circ} 02^{\prime}$	$18^{\circ} 26^{\prime}$	$66^{\circ} 26^{\prime}$	$17^{\circ} 50^{\prime}$		
Samoa	$-14^{\circ} 16^{\prime}$	$-14^{\circ} 16^{\prime}$	$170^{\circ} 00^{\prime}$			
South Carolina	$32^{\circ} 30^{\prime}$	$34^{\circ} 50$	$81^{\circ} 00^{\prime}$	$31^{\circ} 50$	609,600.00	0.00

South Dakota

| North | $44^{\circ} 25^{\prime}$ | $45^{\circ} 41^{\prime}$ | $100^{\circ} 00^{\prime}$ | $43^{\circ} 50^{\prime}$ | $600,000.00$ | 0.00 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| South | $42^{\circ} 50^{\prime}$ | $44^{\circ} 24^{\prime}$ | $100^{\circ} 20^{\prime}$ | $42^{\circ} 20^{\prime}$ | $600,000.00$ | 0.00 |
| Tennessee | $35^{\circ} 15^{\prime}$ | $36^{\circ} 25^{\prime}$ | $86^{\circ} 00^{\prime}$ | $34^{\circ} 20^{\prime}$ | $600,000.00$ | 0.00 |

Texas

| North | $34^{\circ} 39^{\prime}$ | $36^{\circ} 11^{\prime}$ | $101^{\circ} 30^{\prime}$ | $34^{\circ} 00^{\prime}$ | $200,000.00$ | $1,000,000.00$ |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | :--- |
| North central | $32^{\circ} 08^{\prime}$ | $33^{\circ} 58^{\prime}$ | $98^{\circ} 30^{\prime}$ | $31^{\circ} 40^{\prime}$ | $600,000.00$ | $2,000,000.00$ |
| Central | $30^{\circ} 07^{\prime}$ | $31^{\circ} 53^{\prime}$ | $100^{\circ} 20^{\prime}$ | $29^{\circ} 40^{\prime}$ | $700,000.00$ | $3,000,000.00$ |
| South central | $28^{\circ} 23^{\prime}$ | $30^{\circ} 17^{\prime}$ | $99^{\circ} 00^{\prime}$ | $27^{\circ} 50^{\prime}$ | $600,000.00$ | $4,000,000.00$ |
| South | $26^{\circ} 10^{\prime}$ | $27^{\circ} 50^{\prime}$ | $98^{\circ} 30^{\prime}$ | $25^{\circ} 40^{\prime}$ | $300,000.00$ | $5,000,000.00$ |

Utah

North	$40^{\circ} 43^{\prime}$	$41^{\circ} 47^{\prime}$	$111^{\circ} 30^{\prime}$	$40^{\circ} 20^{\prime}$	$500,000.00$	$1,000,000.00$
Central	$39^{\circ} 01^{\prime}$	$40^{\circ} 39^{\prime}$	$111^{\circ} 30^{\prime}$	$38^{\circ} 20^{\prime}$	$500,000.00$	$2,000,000.00$
South	$37^{\circ} 13^{\prime}$	$38^{\circ} 21^{\prime}$	$111^{\circ} 30^{\prime}$	$36^{\circ} 40^{\prime}$	$500,000.00$	$3,000,000.00$

| Virginia | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| North | $38^{\circ} 02^{\prime}$ | $39^{\circ} 12^{\prime}$ | $78^{\circ} 30^{\prime}$ | $37^{\circ} 40^{\prime}$ | $3,500,000.00$ | $2,000,000.00$ |
| South | $36^{\circ} 46^{\prime}$ | $37^{\circ} 58^{\prime}$ | $78^{\circ} 3{ }^{\prime} 0$ | $36^{\circ} 20^{\prime}$ | $3,500,000.00$ | $1,000,000.00$ |

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

	Origin					
	Standard Parallels		Longitude λ_{0} West	Latitude ϕ_{0} North	False East E_{0} (m)	False North N_{0} (m)
	ϕ_{1} South	ϕ_{2} North				
Washington						
North	$47^{\circ} 30^{\prime}$	$48^{\circ} 44^{\prime}$	$120^{\circ} 50^{\prime}$	$47^{\circ} 00^{\prime}$	500,000.00	0.00
South	$45^{\circ} 50$	$47^{\circ} 20^{\prime}$	$120^{\circ} 30^{\prime}$	$45^{\circ} 20^{\prime}$	500,000.00	0.00
West Virginia						
North	$39^{\circ} 00^{\prime}$	$40^{\circ} 15^{\prime}$	$79^{\circ} 30^{\prime}$	$38^{\circ} 30^{\prime}$	600,000.00	0.00
South	$37^{\circ} 29^{\prime}$	$38^{\circ} 53{ }^{\prime}$	$81^{\circ} 00^{\prime}$	$37^{\circ} 00^{\prime}$	600,000.00	0.00
Wisconsin						
North	$45^{\circ} 34$	$46^{\circ} 46$	$90^{\circ} 00^{\prime}$	$45^{\circ} 10^{\prime}$	600,000.00	0.00
Central	$44^{\circ} 15^{\prime}$	$45^{\circ} 30^{\prime}$	$90^{\circ} 00^{\prime}$	$43^{\circ} 50^{\prime}$	600,000.00	0.00
South	$42^{\circ} 44^{\prime}$	$44^{\circ} 04^{\prime}$	$90^{\circ} 00^{\prime}$	$42^{\circ} 00^{\prime}$	600,000.00	0.00

State Plane Co-ordinate System (SPCS) 1927

Several US states used the Lambert Conformal Conic projection for SPCS 1927. The various parameters for each zone in the 1927 system are given in the table below. Use these parameters with the program, together with the Clarke 1866 ellipsoid in feet.

Origin

	Standard Parallels		Longitude	Latitude	False Easting	False Northing
	ϕ_{1} South	ϕ_{2} North	λ_{0} West	ϕ_{0} North	E_{0} (ft.)	N_{0} (ft.)
Alaska						
Zone 10	$51^{\circ} 50^{\prime}$	$53^{\circ} 50^{\prime}$	$176^{\circ} 00^{\prime}$	$51^{\circ} 00^{\prime}$	3000000.00	0.00
Arkansas						
North	$34^{\circ} 56$	$36^{\circ} 14^{\prime}$	$92^{\circ} 00^{\prime}$	$34^{\circ} 20^{\prime}$	2000000.00	0.00
South	$33^{\circ} 18^{\prime}$	$34^{\circ} 46^{\prime}$	$92^{\circ} 00^{\prime}$	$32^{\circ} 40^{\prime}$	2000000.00	0.00

California

| I | $40^{\circ} 00^{\prime}$ | $41^{\circ} 40^{\prime}$ | $122^{\circ} 00^{\prime}$ | $39^{\circ} 20^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| II | $38^{\circ} 20^{\prime}$ | $39^{\circ} 50^{\prime}$ | $122^{\circ} 00^{\prime}$ | $37^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |
| III | $37^{\circ} 04^{\prime}$ | $38^{\circ} 26^{\prime}$ | $120^{\circ} 30^{\prime}$ | $36^{\circ} 30^{\prime}$ | 2000000.00 | 0.00 |
| IV | $36^{\circ} 00^{\prime}$ | $37^{\circ} 15^{\prime}$ | $119^{\circ} 00^{\prime}$ | $35^{\circ} 20^{\prime}$ | 2000000.00 | 0.00 |
| V | $34^{\circ} 02^{\prime}$ | $35^{\circ} 28^{\prime}$ | $118^{\circ} 00^{\prime}$ | $33^{\circ} 30^{\prime}$ | 2000000.00 | 0.00 |
| VI | $32^{\circ} 47^{\prime}$ | $33^{\circ} 53^{\prime}$ | $116^{\circ} 15^{\prime}$ | $32^{\circ} 10^{\prime}$ | 2000000.00 | 0.00 |
| VII | $33^{\circ} 52^{\prime}$ | $34^{\circ} 25^{\prime \prime}$ | $118^{\circ} 20^{\prime}$ | $34^{\circ} 08^{\prime}$ | 4186692.58 | 4160926.74 |

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

	Origin				False Easting	False Northing
	Standard	Parallels	Longitude	Latitude		
	ϕ_{1} South	ϕ_{2} North	λ_{0} West	ϕ_{0} North	E_{0} (ft.)	N_{0} (ft.)
Colorado						
North	$39^{\circ} 43^{\prime}$	$40^{\circ} 47^{\prime}$	$105^{\circ} 30^{\prime}$	$39^{\circ} 20^{\prime}$	2000000.00	0.00
Central	$38^{\circ} 27^{\prime}$	$39^{\circ} 45^{\prime}$	$105^{\circ} 30^{\prime}$	$37^{\circ} 50^{\prime}$	2000000.00	0.00
South	$37^{\circ} 14^{\prime}$	$38^{\circ} 26^{\prime}$	$105^{\circ} 30^{\prime}$	$36^{\circ} 40^{\prime}$	2000000.00	0.00
Connecticut	$41^{\circ} 12^{\prime}$	$41^{\circ} 52^{\prime}$	$72^{\circ} 45^{\prime}$	$40^{\circ} 50^{\prime}$	600000.00	0.00
Florida						
North	$29^{\circ} 35$	$30^{\circ} 45^{\prime}$	$84^{\circ} 30^{\prime}$	$29^{\circ} 00^{\prime}$	2000000.00	0.00
Iowa						
North	$42^{\circ} 04^{\prime}$	$43^{\circ} 16^{\prime}$	$93^{\circ} 30^{\prime}$	$41^{\circ} 30^{\prime}$	2000000.00	0.00
South	$40^{\circ} 37^{\prime}$	$41^{\circ} 47^{\prime}$	$93^{\circ} 30^{\prime}$	$40^{\circ} 00^{\prime}$	2000000.00	0.00
Kansas						
North	$38^{\circ} 43^{\prime}$	$39^{\circ} 47^{\prime}$	$98^{\circ} 00^{\prime}$	$38^{\circ} 20^{\prime}$	2000000.00	0.00
South	$37^{\circ} 16^{\prime}$	$38^{\circ} 34^{\prime}$	$98^{\circ} 30^{\prime}$	$36^{\circ} 40^{\prime}$	2000000.00	0.00
Kentucky						
North	$37^{\circ} 58^{\prime}$	$38^{\circ} 58^{\prime}$	$84^{\circ} 15$	$37^{\circ} 30^{\prime}$	2000000.00	0.00
South	$36^{\circ} 44^{\prime}$	$37^{\circ} 56^{\prime}$	$85^{\circ} 45^{\prime}$	$36^{\circ} 20^{\prime}$	2000000.00	0.00
Louisiana						
North	$31^{\circ} 10^{\prime}$	$32^{\circ} 40^{\prime}$	$92^{\circ} 30^{\prime}$	$30^{\circ} 40^{\prime}$	2000000.00	0.00
South	$29^{\circ} 18^{\prime}$	$30^{\circ} 42^{\prime}$	$91^{\circ} 20^{\prime}$	$28^{\circ} 40^{\prime}$	2000000.00	0.00
Offshore	$26^{\circ} 10^{\prime}$	$27^{\circ} 50^{\prime}$	$91^{\circ} 20^{\prime}$	$25^{\circ} 40^{\prime}$	2000000.00	0.00
Maryland	$38^{\circ} 18^{\prime}$	$39^{\circ} 27^{\prime}$	$77^{\circ} 00^{\prime}$	$37^{\circ} 50^{\prime}$	800000.00	0.00

Massachusetts

| Mainland | $41^{\circ} 43^{\prime}$ | $42^{\circ} 41^{\prime}$ | $71^{\circ} 30^{\prime}$ | $41^{\circ} 00^{\prime}$ | 600000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Island | $41^{\circ} 17^{\prime}$ | $41^{\circ} 29^{\prime}$ | $70^{\circ} 30^{\prime}$ | $41^{\circ} 00^{\prime}$ | 200000.00 | 0.00 |

Michigan (current)

North	$45^{\circ} 29^{\prime}$	$47^{\circ} 05^{\prime}$	$87^{\circ} 00^{\prime}$	$44^{\circ} 47^{\prime}$	2000000.00	0.00
Central	$44^{\circ} 11^{\prime}$	$45^{\circ} 42^{\prime}$	$84^{\circ} 20^{\prime}$	$43^{\circ} 19^{\prime}$	2000000.00	0.00
South	$42^{\circ} 06^{\prime}$	$43^{\circ} 40^{\prime}$	$84^{\circ} 20^{\prime}$	$41^{\circ} 30^{\prime}$	2000000.00	0.00

Minnesota						
North	$47^{\circ} 02^{\prime}$	$48^{\circ} 38^{\prime}$	$93^{\circ} 06^{\prime}$	$46^{\circ} 30^{\prime}$	2000000.00	0.00
Central	$45^{\circ} 37{ }^{\prime}$	$47^{\circ} 03^{\prime}$	$94^{\circ} 15^{\prime}$	$45^{\circ} 00^{\prime}$	2000000.00	0.00
South	$43^{\circ} 47^{\prime}$	$45^{\circ} 13^{\prime}$	$94^{\circ} 00^{\prime}$	$43^{\circ} 00^{\prime}$	2000000.00	0.00

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

Origin

	Standard Parallels			Longitude		Latitude	False Easting		False Northing
	ϕ_{1} South	ϕ_{2} North	λ_{0} West	ϕ_{0} North	$\mathrm{E}_{0}(\mathrm{ft})$.	$\mathrm{N}_{0}(\mathrm{ft})$.			
Montana									
North	$47^{\circ} 51^{\prime}$	$48^{\circ} 43^{\prime}$	$109^{\circ} 30^{\prime}$	$47^{\circ} 00^{\prime}$	2000000.00	0.00			
Central	$46^{\circ} 27^{\prime}$	$47^{\circ} 53^{\prime}$	$109^{\circ} 30^{\prime}$	$45^{\circ} 50^{\prime}$	2000000.00	0.00			
South	$44^{\circ} 52^{\prime}$	$46^{\circ} 24^{\prime}$	$109^{\circ} 30^{\prime}$	$44^{\circ} 00^{\prime}$	2000000.00	0.00			

Nebraska

| North | $41^{\circ} 51^{\prime}$ | $42^{\circ} 49^{\prime}$ | $100^{\circ} 00^{\prime}$ | $41^{\circ} 20^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| South | $40^{\circ} 17^{\prime}$ | $41^{\circ} 43^{\prime}$ | $99^{\circ} 30^{\prime}$ | $39^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |

New York

Long Island	$40^{\circ} 40^{\prime}$	$41^{\circ} 02^{\prime}$	$74^{\circ} 00^{\prime}$	$40^{\circ} 30^{\prime}$	2000000.00	100000.00
North Carolina	$34^{\circ} 20^{\prime}$	$36^{\circ} 10^{\prime}$	$79^{\circ} 00^{\prime}$	$33^{\circ} 45^{\prime}$	2000000.00	0.00

North Dakota

North	$47^{\circ} 26^{\prime}$	$48^{\circ} 44^{\prime}$	$100^{\circ} 30^{\prime}$	$47^{\circ} 00^{\prime}$	2000000.00	0.00		
South	$46^{\circ} 11^{\prime}$	$47^{\circ} 29^{\prime}$	$100^{\circ} 30^{\prime}$	$45^{\circ} 40^{\prime}$	2000000.00	0.00		
Ohio								
North								
South	$38^{\circ} 46^{\prime}$	$41^{\circ} 42^{\prime}$	$82^{\circ} 30^{\prime}$	$32^{\circ} 40^{\prime}$	$82^{\circ} 30^{\prime}$	$38^{\circ} 00^{\prime}$	200000000.00	0.00

Oklahoma

North	$35^{\circ} 34^{\prime}$	$36^{\circ} 46^{\prime}$	$98^{\circ} 00^{\prime}$	$35^{\circ} 00^{\prime}$	2000000.00	0.00
South	$33^{\circ} 56^{\prime}$	$35^{\circ} 14^{\prime}$	$98^{\circ} 00^{\prime}$	$33^{\circ} 20^{\prime}$	2000000.00	0.00

Oregon

| North | $44^{\circ} 20^{\prime}$ | $46^{\circ} 00^{\prime}$ | $120^{\circ} 30^{\prime}$ | $43^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| South | $42^{\circ} 20^{\prime}$ | $44^{\circ} 00^{\prime}$ | $120^{\circ} 30^{\prime}$ | $41^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |

Pennsylvania

North	$40^{\circ} 53^{\prime}$	$41^{\circ} 57^{\prime}$	$77^{\circ} 45^{\prime}$	$40^{\circ} 10^{\prime}$	2000000.00	0.00
South	$39^{\circ} 56^{\prime}$	$40^{\circ} 58^{\prime}$	$77^{\circ} 45^{\prime}$	$39^{\circ} 20^{\prime}$	2000000.00	0.00

Puerto Rico and Virgin Islands

1	$18^{\circ} 02^{\prime}$	$18^{\circ} 26^{\prime}$	$66^{\circ} 26^{\prime}$	$17^{\circ} 50^{\prime}$	500000.00	0.00
2 (St. Croix)	$18^{\circ} 02^{\prime}$	$18^{\circ} 26^{\prime}$	$66^{\circ} 26^{\prime}$	$17^{\circ} 50^{\prime}$	500000.00	100000.00
Samoa	$-14^{\circ} 16^{\prime}$	$-14^{\circ} 16^{\prime}$	$170^{\circ} 00^{\prime}$		500000.00	0.00

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

	Origin					
	Standard	Parallels	Longitude	Latitude	False Easting	False Northing
	ϕ_{1} South	ϕ_{2} North	λ_{0} West	ϕ_{0} North	E_{0} (ft.)	N_{0} (ft.)
South Carolina						
North	$33^{\circ} 46^{\prime}$	$34^{\circ} 58^{\prime}$	$81^{\circ} 00^{\prime}$	$33^{\circ} 00^{\prime}$	2000000.00	0.00
South	$32^{\circ} 20^{\prime}$	$33^{\circ} 40^{\prime}$	$81^{\circ} 00^{\prime}$	$31^{\circ} 50$	2000000.00	0.00

South Dakota

| North | $44^{\circ} 25^{\prime}$ | $45^{\circ} 41^{\prime}$ | $100^{\circ} 00^{\prime}$ | $43^{\circ} 50^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| South | $42^{\circ} 50^{\prime}$ | $44^{\circ} 24^{\prime}$ | $100^{\circ} 20^{\prime}$ | $42^{\circ} 20^{\prime}$ | 2000000.00 | 0.00 |
| Tennessee | $35^{\circ} 15^{\prime}$ | $36^{\circ} 25^{\prime}$ | $86^{\circ} 00^{\prime}$ | $34^{\circ} 40^{\prime}$ | 2000000.00 | 100000.00 |

Texas

| North | $34^{\circ} 39^{\prime}$ | $36^{\circ} 11^{\prime}$ | $101^{\circ} 30^{\prime}$ | $34^{\circ} 00^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| North central | $32^{\circ} 08^{\prime}$ | $33^{\circ} 58^{\prime}$ | $97^{\circ} 30^{\prime}$ | $31^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |
| Central | $30^{\circ} 07^{\prime}$ | $31^{\circ} 53^{\prime}$ | $100^{\circ} 20^{\prime}$ | $29^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |
| South central | $28^{\circ} 23^{\prime}$ | $30^{\circ} 17^{\prime}$ | $99^{\circ} 00^{\prime}$ | $27^{\circ} 50^{\prime}$ | 2000000.00 | 0.00 |
| South | $26^{\circ} 10^{\prime}$ | $27^{\circ} 50^{\prime}$ | $98^{\circ} 30^{\prime}$ | $25^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |

Utah

| North | $40^{\circ} 43^{\prime}$ | $41^{\circ} 47^{\prime}$ | $111^{\circ} 30^{\prime}$ | $40^{\circ} 20^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Central | $39^{\circ} 01^{\prime}$ | $40^{\circ} 39^{\prime}$ | $111^{\circ} 30^{\prime}$ | $38^{\circ} 20^{\prime}$ | 2000000.00 | 0.00 |
| South | $37^{\circ} 13^{\prime}$ | $38^{\circ} 21$ | $111^{\circ} 30^{\prime}$ | $36^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |

Virginia

| North | $38^{\circ} 02^{\prime}$ | $39^{\circ} 12^{\prime}$ | $78^{\circ} 30^{\prime}$ | $37^{\circ} 40^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| South | $36^{\circ} 46^{\prime}$ | $37^{\circ} 58^{\prime}$ | $78^{\circ} 30^{\prime}$ | $36^{\circ} 20^{\prime}$ | 2000000.00 | 0.00 |

Washington

North	$47^{\circ} 30^{\prime}$	$48^{\circ} 44^{\prime}$	$120^{\circ} 50^{\prime}$	$47^{\circ} 00^{\prime}$	2000000.00	0.00
South	$45^{\circ} 50^{\prime}$	$47^{\circ} 20^{\prime}$	$120^{\circ} 30^{\prime}$	$45^{\circ} 20^{\prime}$	2000000.00	0.00

West Virginia

| North | $39^{\circ} 00^{\prime}$ | $40^{\circ} 15^{\prime}$ | $79^{\circ} 30^{\prime}$ | $38^{\circ} 30^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| South | $37^{\circ} 29^{\prime}$ | $38^{\circ} 53^{\prime}$ | $81^{\circ} 00^{\prime}$ | $37^{\circ} 00^{\prime}$ | 2000000.00 | 0.00 |

Wisconsin

| North | $45^{\circ} 34^{\prime}$ | $46^{\circ} 46^{\prime}$ | $90^{\circ} 00^{\prime}$ | $45^{\circ} 10^{\prime}$ | 2000000.00 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Central | $44^{\circ} 15^{\prime}$ | $45^{\circ} 30^{\prime}$ | $90^{\circ} 00^{\prime}$ | $43^{\circ} 50^{\prime}$ | 2000000.00 | 0.00 |
| South | $42^{\circ} 44^{\prime}$ | $44^{\circ} 04^{\prime}$ | $90^{\circ} 00^{\prime}$ | $42^{\circ} 00^{\prime}$ | 2000000.00 | 0.00 |

Lambert Conformal Conic Co-ordinates to Latitude/Longitude

Localization

If it is intended to do most conversions in the one SPCS zone, then the parameters for that zone can be coded into the program. When such a program is run, the program will prompt for the values (which allows the user to work in a different zone, as needed), but will display and store the regular values for the chosen zone. These can also be changed by changing the program, if a series of points on a different zone are to be converted.

The code required to 'hardwire' zone-specific values into the program is given below, based on a specific zone. If we were going to use California Zone III in SPCS 1983, its parameters are:
$\phi_{0}=36^{\circ} 30^{\prime}$
$\lambda_{0}=-120^{\circ} 30^{\prime}$
$\mathrm{a}=6378137 \mathrm{~m}$
$e^{2}=0.00669438$
$\phi_{1}=37^{\circ} 04^{\prime}$
$\phi_{2}=38^{\circ} 26^{\prime}$
$\mathrm{E}_{0}=2,000,000.000 \mathrm{~m}$
$\mathrm{N}_{0}=500,000.000 \mathrm{~m}$

The resulting code would be as follows, with the rest of the code left out. Note that the angular values are entered in HP notation (DDD.MMSS), as the program converts everything for internal use later.

Line	Instruction	Display	User Instructions
L001	LBL L		$\phi_{0} \quad$ value of zone
\ldots.		
L011	CL x		
L012	STO X		
L013	STO Y		
L014	36.3		
L015	STO P		
L016	-120.30		λ_{0} value of zone
L017	STO Q		
L018	37.04		$\phi_{1} \quad$ value of zone
L019	STO C		
L020	38.26		$\phi_{2} \quad$ value of zone
L021	STO D		
L022	2000000.0		$E_{0} \quad$ value of zone
L023	STO G		
L024	500000.0		$\mathrm{N}_{0} \quad$ value of zone
L025	STO H		
L026	6378137		a value for ellipsoid (WGS84/NAD83)
L027	STO A		
L028	0.00669438		e^{2} value for ellipsoid (WGS84/NAD83)
L029	STO E		
L030	CHECK-ENTER A		
L031	PSE		
L032	INPUT A		
		

This will change subsequent line numbers (they will be 6 greater than before), as well as the program length and checksum, but the program should otherwise be unaffected and should run correctly. Use the values for your preferred zone, and everything should be fine.

Corrections Line L079 changed to STO Z. Alaska standard parallel value corrected.

