HP-35s Calculator Program
XYZ 2
Convert XYZ Geocentric Co-ordinates on any ellipsoid to Latitude, Longitude and Height

Programmer: Dr. Bill Hazelton
Date: October, 2007. Mnemonic: L for 'XYZ to Lat/Long'

Line	Instruction	Display	User Instructions
L001	LBL L		Press XEQ L ENTER to run program
L002	CLSTK		
L003	FS? 10		
L004	GTO L008		
L005	SF 1		
L006	SF 10		
L007	GTO L009		
L008	CF 1		
L009	XYZ TO LATLONG		
L010	PSE		
L011	6378137		Value of a for WGS84/NAD83/GRS80
L012	STO A		
L013	0.006694381		Value of e^{2} for WGS84/NAD83/GRS80
L014	STO E		
L015	SEMIMAJOR AXIS		
L016	PSE		
L017	INPUT A	6378137	Enter value of a if different; Press R/S
L018	E SQUARED		
L019	PSE		
L020	INPUT E	0.006694381	Enter value of e^{2} if different; Press R/S
L021	ENTER X CO-ORD		
L022	PSE		
L023	INPUT X		Enter X co-ordinate of point; Press R/S
L024	ENTER Y CO-ORD		
L025	PSE		
L026	INPUT Y		Enter Y co-ordinate of point; Press R/S
L027	ENTER Z CO-ORD		
L028	PSE		
L029	INPUT Z		Enter Z co-ordinate of point; Press R/S
L030	RCL Y		
L031	RCL X		
L032	\div		
L033	ATAN		
L034	STO L		
L035	1		
L036	RCL- E		
L037	RCL A		
L038	x^{2}		

XYZ Geocentric Co-ordinates to Lat/Long/Ht

Line	Instruction	Line	Instruction	Line	Instruction
L039	\times	L084	RCL A	L129	RCL- Z
L040	$\sqrt{ } \mathrm{x}$	L085	1	L130	x^{2}
L041	STO B	L086	RCL F	L131	STO+ H
L042	RCL A	L087	SIN	L132	RCL X
L043	x^{2}	L088	x^{2}	L133	x^{2}
L044	RCL B	L089	RCL× E	L134	RCL Y
L045	x^{2}	L090	-	L135	x^{2}
L046	-	L091	\sqrt{x}	L136	+
L047	RCL B	L092	\div	L137	RCL Z
L048	x^{2}	L093	STO V	L138	x^{2}
L049	\div	L094	RCL F	L139	+
L050	STO D	L095	COS	L140	$\sqrt{\mathrm{x}}$
L051	RCL X	L096	\times	L141	RCL G
L052	x^{2}	L097	RCL L	L142	$\sqrt{\mathrm{x}}$
L053	RCL Y	L098	COS	L143	-
L054	x^{2}	L099	\times	L144	ENTER
L055	+	L100	STO C	L145	ABS
L056	$\sqrt{\mathrm{x}}$	L101	RCL- X	L146	\div
L057	STO P	L102	x^{2}	L147	RCL H
L058	RCL Z	L103	STO H	L148	$\sqrt{\mathrm{x}}$
L059	$\mathrm{x}<>\mathrm{y}$	L104	RCL C	L149	\times
L060	\div	L105	x^{2}	L150	STO H
L061	RCL A	L106	STO G	L151	RCL F
L062	RCL \div B	L107	RCL C	L152	\rightarrow HMS
L063	\times	L108	RCL L	L153	STO F
L064	ATAN	L109	TAN	L154	LATITUDE
L065	STO U	L110	\times	L155	PSE
L066	SIN	L111	STO C	L156	VIEW F
L067	3	L112	x^{2}	L157	RCL L
L068	y^{x}	L113	STO+ G	L158	\rightarrow HMS
L069	RCL× B	L114	RCL C	L159	STO L
L070	RCL× D	L115	RCL- Y	L160	LONGITUDE
L071	RCL+ Z	L116	x^{2}	L161	PSE
L072	RCL U	L117	STO+ H	L162	VIEW L
L073	COS	L118	RCL V	L163	ELLIPSE HEIGHT
L074	3	L019	1	L164	PSE
L075	y^{x}	L120	RCL- E	L165	VIEW H
L076	RCL× A	L121	\times	L166	RCL H
L077	RCL× E	L122	RCL F	L167	RCL L
L078	RCL P	L123	SIN	L168	RCL F
L079	$\mathrm{x}<>\mathrm{y}$	L124	\times	L169	FS? 1
L080	-	L125	STO C	L170	CF 10
L081	\div	L126	x^{2}	L171	RTN
L082	ATAN	L127	STO+ G		
L083	STO F	L128	RCL C		

XYZ Geocentric Co-ordinates to Lat/Long/Ht

Notes

(1) A program to convert X, Y, Z geocentric co-ordinates to latitude, longitude and ellipsoidal height on any ellipsoid.
(2) The assumption is that the distances are in meters, but by using feet for the semimajor axis of the ellipsoid, co-ordinates in feet can be produced.
(3) The program pre-enters the parameters for the WGS84/NAD83/GRS80 ellipsoid by default (in meters), to save you having to remember these. If you want a different ellipsoid, enter the appropriate a and e^{2} values at the prompt (A and E). To use the provided values, just press R / S when they appear.

The program sets Flag 10, to allow prompts to be displayed. When the program finishes, it sets Flag 10 back to its original value. To do this, the program uses Flag 1.

Theory

The program implements the following equations:

$$
\begin{align*}
& \lambda=\arctan \left(\frac{Y}{X}\right) \tag{1}\\
& \mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right) \quad[\text { the semi-minor axis length }] \tag{2}
\end{align*}
$$

XYZ Geocentric Co-ordinates to Lat/Long/Ht

$$
\begin{align*}
& \mathrm{p}=\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}} \tag{3}\\
& \tan u=\left(\frac{\mathrm{Z}}{\mathrm{p}}\right)\left(\frac{\mathrm{a}}{\mathrm{~b}}\right) \tag{4}\\
& \mathrm{v}=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{5}\\
& \phi=\arctan \left(\frac{\mathrm{Z}+\varepsilon \mathrm{b} \sin ^{3} u}{\mathrm{p}-\mathrm{e}^{2} \operatorname{acos}^{3} u}\right) \tag{6}\\
& \varepsilon=\mathrm{e}^{\prime 2}=\frac{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{\mathrm{b}^{2}} \tag{7}\\
& \mathrm{X}=\mathrm{v} \cos \phi \cos \lambda \tag{8}\\
& \mathrm{Y}=v \cos \phi \sin \lambda \tag{9}\\
& \mathrm{Z}=v\left(1-\mathrm{e}^{2}\right) \sin \phi \tag{10}
\end{align*} \quad \text { [the second eccentricity] } \quad \text { (}
$$

Equation [1] provides a direct solution for the longitude, λ. The program then computes a variety of intermediate results, before using equation [6] to compute the latitude. This is a direct solution. The program then computes the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ location for the point on the ellipsoid at ϕ, λ, using equations [8] to [10]. The distance between this point and the given $\mathrm{X}, \mathrm{Y} \mathrm{Z}$ co-ordinates is computed to determine h, the ellipsoidal height.

The distances to the Earth's center from the original X, Y, Z co-ordinates and the point on the ellipsoid are computed to get the correct sign for h, i.e., is the point above or below the surface of the ellipsoid.

The equations are from Bowering (1976).

Sample Computation

$$
\begin{aligned}
& \text { Inputs } \quad a=6378137 \mathrm{~m} \\
& \mathrm{e}^{2}=0.006694381 \quad \text { (WGS84/NAD83/GRS80 parameters) } \\
& \mathrm{X}=1353776.483 \mathrm{~m} \\
& \mathrm{Y}=-5052362.616 \mathrm{~m} \\
& Z=3637981.622 \mathrm{~m} \\
& \text { Results } \\
& \phi=35^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N} \text { (displayed as } \mathrm{F}=35.000000 \text {) } \\
& \lambda=75^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{W} \text { (displayed as } \mathrm{L}=-75.000000 \text {) } \\
& h=200.000 \mathrm{~m} \quad \text { (displayed as } \mathrm{H}=200.0000049)
\end{aligned}
$$

Note that the precision of the answer depends upon the precision of the input. One millimeter $(0.001 \mathrm{~m})$ at the surface of the ellipsoid equates to $0.00003^{\prime \prime}$ of arc of latitude and generally a smaller amount of longitude. Consider your input precisions and adjust the quoted precision of the outputs to match. You can use the SHOW function to see all the digits in a number.

XYZ Geocentric Co-ordinates to Lat/Long/Ht

Running the Program

Begin by pressing XEQ L ENTER
The calculator displays XYZ to LATLONG, briefly, then displays SEMIMAJOR AXIS, briefly.
The calculator displays: A?
6,378,137.0000
This is the NAD83/WGS84/GRS80 ellipsoid semi-major axis. If this is OK, press R/S; if not key in correct value and press R/S.

The calculator displays: E SQUARED, briefly.
E?
0.006694381 (suitably rounded, according to your settings)

This is the eccentricity of the NAD83/WGS84/GRS80 ellipsoid, e^{2}. If this OK, press R/S; if not, key in correct value and press R/S.

The calculator displays:
ENTER X COORD, briefly.
X ?
[Whatever value happens to be in this register]
Key in the X co-ordinate of the point and press R / S. Remember to use the appropriate sign, if negative. In the given example, key in 1353776.483 and press R/S.

The calculator displays:
ENTER Y COORD, briefly.
Y?
[Whatever value happens to be in this register]
Key in the Y co-ordinate of the point and press R/S. Remember to use the appropriate sign, if negative. In the given example, key in -5052362.616 and press R/S.

The calculator displays:
ENTER Z COORD, briefly.
Z?
[Whatever value happens to be in this register]
Key in the Z co-ordinate for the point and press R/S. Remember to use the appropriate sign, if negative. In the given example, key in 3637981.622 and press R/S.

The calculator displays RUNNING for a short while.
The calculator displays:
LATITUDE, briefly.
$\mathrm{F}=$
35.00000000

Press R/S
The calculator display
LONGITUDE, briefly.
L=
$-75.0000000 \quad$ Press R/S
The calculator displays: ELLIPSE HEIGHT, briefly. $\mathrm{H}=$
$200.0000049 \quad$ Press R/S

The calculator now completes its run, placing the latitude, longitude and height on the stack, and resetting Flag 10 to its state when the program started.

XYZ Geocentric Co-ordinates to Lat/Long/Ht

These calculations agree with the NGS website computations to within 0.001 m in height and $0.00002^{\prime \prime}$ in latitude and longitude.

Storage Registers Used

A Semi-major axis of the ellipsoid, a. By default, set to 6378137 m .
B Semi-minor axis of the ellipsoid. Computed from a and e^{2}.
C Intermediate value.
D Second eccentricity of ellipsoid.
E Eccentricity of the ellipsoid, e^{2}. By default, set to 0.006694381 .
F Latitude (geodetic) of the point, ϕ.
G Distance from ellipsoid point to center of Earth.
H Ellipsoidal height of the point, h.
$\mathbf{L} \quad$ Longitude of the point, λ.
$\mathbf{P} \quad$ Intermediate value.
$\mathbf{U} \quad$ Intermediate value.
\mathbf{V} The radius of curvature of the ellipsoid in the prime vertical, v.
$\mathbf{X} \quad$ Geocentric X co-ordinate of the point.
Y Geocentric Y co-ordinate of the point.
Z Geocentric Z co-ordinate of the point.

Labels Used

Label $\mathbf{L} \quad$ Length $=643 \quad$ Checksum $=36 \mathrm{FE}$
Use the length ($\mathrm{LN}=$) and Checksum $(\mathrm{CK}=)$ values to check if program was entered correctly. Use the sample computation to check proper operation after entry.

References

Bowering, B.R., 1976. Transformation from spatial to geographical co-ordinates. Survey Review, No. 181, pp. 323-327.

The NGS website for the interactive $\mathrm{XYZ} \Leftrightarrow$ lat/long/height converter:
http://www.ngs.noaa.gov/TOOLS/XYZ/xyz.shtml

